import gradio as gr from transformers import AutoProcessor, Idefics3ForConditionalGeneration import re import time from PIL import Image import torch import spaces import subprocess subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) processor = AutoProcessor.from_pretrained("HuggingFaceM4/idefics3-8b-new") model = Idefics3ForConditionalGeneration.from_pretrained("HuggingFaceM4/idefics3-8b-new", torch_dtype=torch.bfloat16, #_attn_implementation="flash_attention_2", trust_remote_code=True).to("cuda") BAD_WORDS_IDS = processor.tokenizer(["", ""], add_special_tokens=False).input_ids EOS_WORDS_IDS = [processor.tokenizer.eos_token_id] #@spaces.GPU def model_inference( images, text, decoding_strategy, temperature, max_new_tokens, repetition_penalty, top_p ): if text == "" and not images: gr.Error("Please input a query and optionally image(s).") if text == "" and images: gr.Error("Please input a text query along the image(s).") if isinstance(images, Image.Image): images = [images] if isinstance(text, str): text = "" + text text = [text] inputs = processor(text=text, images=images, padding=True, return_tensors="pt").to("cuda") print("inputs",inputs) assert decoding_strategy in [ "Greedy", "Top P Sampling", ] if decoding_strategy == "Greedy": do_sample = False elif decoding_strategy == "Top P Sampling": do_sample = True # Generate generated_ids = model.generate(**inputs, bad_words_ids=BAD_WORDS_IDS, max_new_tokens=max_new_tokens, temperature=temperature, do_sample=do_sample, repetition_penalty=repetition_penalty, top_p=top_p), generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True) #generated_texts = processor.batch_decode(generated_ids[:, generation_args["input_ids"].size(1):], skip_special_tokens=True) print("INPUT:", text, "|OUTPUT:", generated_texts) return generated_texts[0] with gr.Blocks(fill_height=True) as demo: gr.Markdown("## IDEFICS2Llama 🐶") gr.Markdown("Play with [IDEFICS2Llama](https://huggingface.co/HuggingFaceM4/idefics2-8b) in this demo. To get started, upload an image and text or try one of the examples.") gr.Markdown("**Important note**: This model is not made for chatting, the chatty IDEFICS2 will be released in the upcoming days. **This model is very strong on various tasks, including visual question answering, document retrieval and more, you can see it through the examples.**") gr.Markdown("Learn more about IDEFICS2 in this [blog post](https://huggingface.co/blog/idefics2).") with gr.Column(): image_input = gr.Image(label="Upload your Image", type="pil") query_input = gr.Textbox(label="Prompt") submit_btn = gr.Button("Submit") output = gr.Textbox(label="Output") with gr.Accordion(label="Example Inputs and Advanced Generation Parameters"): examples=[["example_images/travel_tips.jpg", "I want to go somewhere similar to the one in the photo. Give me destinations and travel tips.", "Greedy", 0.4, 512, 1.2, 0.8], ["example_images/dummy_pdf.png", "How much percent is the order status?", "Greedy", 0.4, 512, 1.2, 0.8], ["example_images/art_critic.png", "As an art critic AI assistant, could you describe this painting in details and make a thorough critic?.", "Greedy", 0.4, 512, 1.2, 0.8], ["example_images/s2w_example.png", "What is this UI about?", "Greedy", 0.4, 512, 1.2, 0.8]] # Hyper-parameters for generation max_new_tokens = gr.Slider( minimum=8, maximum=1024, value=512, step=1, interactive=True, label="Maximum number of new tokens to generate", ) repetition_penalty = gr.Slider( minimum=0.01, maximum=5.0, value=1.2, step=0.01, interactive=True, label="Repetition penalty", info="1.0 is equivalent to no penalty", ) temperature = gr.Slider( minimum=0.0, maximum=5.0, value=0.4, step=0.1, interactive=True, label="Sampling temperature", info="Higher values will produce more diverse outputs.", ) top_p = gr.Slider( minimum=0.01, maximum=0.99, value=0.8, step=0.01, interactive=True, label="Top P", info="Higher values is equivalent to sampling more low-probability tokens.", ) decoding_strategy = gr.Radio( [ "Greedy", "Top P Sampling", ], value="Greedy", label="Decoding strategy", interactive=True, info="Higher values is equivalent to sampling more low-probability tokens.", ) decoding_strategy.change( fn=lambda selection: gr.Slider( visible=( selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"] ) ), inputs=decoding_strategy, outputs=temperature, ) decoding_strategy.change( fn=lambda selection: gr.Slider( visible=( selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"] ) ), inputs=decoding_strategy, outputs=repetition_penalty, ) decoding_strategy.change( fn=lambda selection: gr.Slider(visible=(selection in ["Top P Sampling"])), inputs=decoding_strategy, outputs=top_p, ) gr.Examples( examples = examples, inputs=[image_input, query_input, decoding_strategy, temperature, max_new_tokens, repetition_penalty, top_p], outputs=output, fn=model_inference ) submit_btn.click(model_inference, inputs = [image_input, query_input, decoding_strategy, temperature, max_new_tokens, repetition_penalty, top_p], outputs=output) demo.launch(debug=True)