import os, sys import streamlit as st import pandas as pd import numpy as np from sklearn.metrics.pairwise import paired_cosine_distances from sklearn.preprocessing import normalize from rolaser import RoLaserEncoder laser_checkpoint = f"{os.environ['LASER']}/models/laser2.pt" laser_vocab = f"{os.environ['LASER']}/models/laser2.cvocab" laser_tokenizer = 'spm' laser_model = RoLaserEncoder(model_path=laser_checkpoint, vocab=laser_vocab, tokenizer=laser_tokenizer) rolaser_checkpoint = f"{os.environ['ROLASER']}/models/RoLASER/rolaser.pt" rolaser_vocab = f"{os.environ['ROLASER']}/models/RoLASER/rolaser.cvocab" rolaser_tokenizer = 'roberta' rolaser_model = RoLaserEncoder(model_path=rolaser_checkpoint, vocab=rolaser_vocab, tokenizer=rolaser_tokenizer) c_rolaser_checkpoint = f"{os.environ['ROLASER']}/models/c-RoLASER/c-rolaser.pt" c_rolaser_vocab = f"{os.environ['ROLASER']}/models/c-RoLASER/c-rolaser.cvocab" c_rolaser_tokenizer = 'char' c_rolaser_model = RoLaserEncoder(model_path=c_rolaser_checkpoint, vocab=c_rolaser_vocab, tokenizer=c_rolaser_tokenizer) def add_text_inputs(i): col1, col2 = st.columns(2) with col1: text_input1 = st.text_input('Enter standard text here:', f'std{i}') with col2: text_input2 = st.text_input('Enter non-standard text here:', f'ugc{i}') return text_input1, text_input2 def main(): st.title('Pairwise Cosine Distance Calculator') num_pairs = st.sidebar.number_input('Number of Text Input Pairs', min_value=1, max_value=10, value=1) std_text_inputs = [] ugc_text_inputs = [] for i in range(num_pairs): pair = add_text_inputs(i) std_text_inputs.append(pair[0]) ugc_text_inputs.append(pair[1]) if st.button('Add Text Input Pair'): pair = add_text_inputs(len(std_text_inputs)) std_text_inputs.append(pair[0]) ugc_text_inputs.append(pair[1]) if st.button('Submit'): X_std_laser = normalize(laser_model.encode(std_text_inputs)) X_ugc_laser = normalize(laser_model.encode(ugc_text_inputs)) X_cos_laser = paired_cosine_distances(X_std_laser, X_ugc_laser) X_std_rolaser = normalize(rolaser_model.encode(std_text_inputs)) X_ugc_rolaser = normalize(rolaser_model.encode(ugc_text_inputs)) X_cos_rolaser = paired_cosine_distances(X_std_rolaser, X_ugc_rolaser) X_std_c_rolaser = normalize(c_rolaser_model.encode(std_text_inputs)) X_ugc_c_rolaser = normalize(c_rolaser_model.encode(ugc_text_inputs)) X_cos_c_rolaser = paired_cosine_distances(X_std_c_rolaser, X_ugc_c_rolaser) outputs = pd.DataFrame(columns=[ 'model', 'pair', 'ugc', 'std', 'cos']) outputs['model'] = np.repeat(['LASER', 'RoLASER', 'C-RoLASER'], 3) outputs['pair'] = np.tile(np.arange(1,num_pairs+1), 3) outputs['std'] = np.tile(std_text_inputs, 3) outputs['ugc'] = np.tile(ugc_text_inputs, 3) outputs['cos'] = np.concatenate([X_cos_laser, X_cos_rolaser, X_cos_c_rolaser], axis=1) st.write('## Cosine Distance Scores:') st.bar_chart(outputs, x='pair', y='cos', color='model', title='Cosine Distance Scores', xlabel='Text Input Pair', ylabel='Cosine Distance', legend='Model') st.write('## Average Cosine Distance Scores:') st.write(f'LASER: {outputs[outputs["model"]=="LASER"]["cos"].mean()}') st.write(f'RoLASER: {outputs[outputs["model"]=="RoLASER"]["cos"].mean()}') st.write(f'C-RoLASER: {outputs[outputs["model"]=="C-RoLASER"]["cos"].mean()}') if __name__ == "__main__": main()