# EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction # Han Cai, Junyan Li, Muyan Hu, Chuang Gan, Song Han # International Conference on Computer Vision (ICCV), 2023 from efficientvit.models.efficientvit import (EfficientViTSam, efficientvit_sam_l0, efficientvit_sam_l1, efficientvit_sam_l2, efficientvit_sam_xl0, efficientvit_sam_xl1) from efficientvit.models.nn.norm import set_norm_eps from efficientvit.models.utils import load_state_dict_from_file __all__ = ["create_sam_model"] REGISTERED_SAM_MODEL: dict[str, str] = { "l0": "assets/checkpoints/sam/l0.pt", "l1": "assets/checkpoints/sam/l1.pt", "l2": "assets/checkpoints/sam/l2.pt", "xl0": "assets/checkpoints/sam/xl0.pt", "xl1": "assets/checkpoints/sam/xl1.pt", } def create_sam_model( name: str, pretrained=True, weight_url: str or None = None, **kwargs ) -> EfficientViTSam: model_dict = { "l0": efficientvit_sam_l0, "l1": efficientvit_sam_l1, "l2": efficientvit_sam_l2, "xl0": efficientvit_sam_xl0, "xl1": efficientvit_sam_xl1, } model_id = name.split("-")[0] if model_id not in model_dict: raise ValueError( f"Do not find {name} in the model zoo. List of models: {list(model_dict.keys())}" ) else: model = model_dict[model_id](**kwargs) set_norm_eps(model, 1e-6) if pretrained: weight_url = weight_url or REGISTERED_SAM_MODEL.get(name, None) if weight_url is None: raise ValueError(f"Do not find the pretrained weight of {name}.") else: weight = load_state_dict_from_file(weight_url) model.load_state_dict(weight) return model