import os import random import logging import datetime import pandas as pd import joblib import pickle import lmdb import subprocess import torch from Bio import PDB, SeqRecord, SeqIO, Seq from Bio.PDB import PDBExceptions from Bio.PDB import Polypeptide from torch.utils.data import Dataset from tqdm.auto import tqdm from ..utils.protein import parsers, constants from ._base import register_dataset ALLOWED_AG_TYPES = { 'protein', 'protein | protein', 'protein | protein | protein', 'protein | protein | protein | protein | protein', 'protein | protein | protein | protein', } RESOLUTION_THRESHOLD = 4.0 TEST_ANTIGENS = [ 'sars-cov-2 receptor binding domain', 'hiv-1 envelope glycoprotein gp160', 'mers s', 'influenza a virus', 'cd27 antigen', ] def nan_to_empty_string(val): if val != val or not val: return '' else: return val def nan_to_none(val): if val != val or not val: return None else: return val def split_sabdab_delimited_str(val): if not val: return [] else: return [s.strip() for s in val.split('|')] def parse_sabdab_resolution(val): if val == 'NOT' or not val or val != val: return None elif isinstance(val, str) and ',' in val: return float(val.split(',')[0].strip()) else: return float(val) def _aa_tensor_to_sequence(aa): return ''.join([Polypeptide.index_to_one(a.item()) for a in aa.flatten()]) def _label_heavy_chain_cdr(data, seq_map, max_cdr3_length=30): if data is None or seq_map is None: return data, seq_map # Add CDR labels cdr_flag = torch.zeros_like(data['aa']) for position, idx in seq_map.items(): resseq = position[1] cdr_type = constants.ChothiaCDRRange.to_cdr('H', resseq) if cdr_type is not None: cdr_flag[idx] = cdr_type data['cdr_flag'] = cdr_flag # Add CDR sequence annotations data['H1_seq'] = _aa_tensor_to_sequence( data['aa'][cdr_flag == constants.CDR.H1] ) data['H2_seq'] = _aa_tensor_to_sequence( data['aa'][cdr_flag == constants.CDR.H2] ) data['H3_seq'] = _aa_tensor_to_sequence( data['aa'][cdr_flag == constants.CDR.H3] ) cdr3_length = (cdr_flag == constants.CDR.H3).sum().item() # Remove too long CDR3 if cdr3_length > max_cdr3_length: cdr_flag[cdr_flag == constants.CDR.H3] = 0 logging.warning(f'CDR-H3 too long {cdr3_length}. Removed.') return None, None # Filter: ensure CDR3 exists if cdr3_length == 0: logging.warning('No CDR-H3 found in the heavy chain.') return None, None return data, seq_map def _label_light_chain_cdr(data, seq_map, max_cdr3_length=30): if data is None or seq_map is None: return data, seq_map cdr_flag = torch.zeros_like(data['aa']) for position, idx in seq_map.items(): resseq = position[1] cdr_type = constants.ChothiaCDRRange.to_cdr('L', resseq) if cdr_type is not None: cdr_flag[idx] = cdr_type data['cdr_flag'] = cdr_flag data['L1_seq'] = _aa_tensor_to_sequence( data['aa'][cdr_flag == constants.CDR.L1] ) data['L2_seq'] = _aa_tensor_to_sequence( data['aa'][cdr_flag == constants.CDR.L2] ) data['L3_seq'] = _aa_tensor_to_sequence( data['aa'][cdr_flag == constants.CDR.L3] ) cdr3_length = (cdr_flag == constants.CDR.L3).sum().item() # Remove too long CDR3 if cdr3_length > max_cdr3_length: cdr_flag[cdr_flag == constants.CDR.L3] = 0 logging.warning(f'CDR-L3 too long {cdr3_length}. Removed.') return None, None # Ensure CDR3 exists if cdr3_length == 0: logging.warning('No CDRs found in the light chain.') return None, None return data, seq_map def preprocess_sabdab_structure(task): entry = task['entry'] pdb_path = task['pdb_path'] parser = PDB.PDBParser(QUIET=True) model = parser.get_structure(id, pdb_path)[0] parsed = { 'id': entry['id'], 'heavy': None, 'heavy_seqmap': None, 'light': None, 'light_seqmap': None, 'antigen': None, 'antigen_seqmap': None, } try: if entry['H_chain'] is not None: ( parsed['heavy'], parsed['heavy_seqmap'] ) = _label_heavy_chain_cdr(*parsers.parse_biopython_structure( model[entry['H_chain']], max_resseq = 113 # Chothia, end of Heavy chain Fv )) if entry['L_chain'] is not None: ( parsed['light'], parsed['light_seqmap'] ) = _label_light_chain_cdr(*parsers.parse_biopython_structure( model[entry['L_chain']], max_resseq = 106 # Chothia, end of Light chain Fv )) if parsed['heavy'] is None and parsed['light'] is None: raise ValueError('Neither valid H-chain or L-chain is found.') if len(entry['ag_chains']) > 0: chains = [model[c] for c in entry['ag_chains']] ( parsed['antigen'], parsed['antigen_seqmap'] ) = parsers.parse_biopython_structure(chains) except ( PDBExceptions.PDBConstructionException, parsers.ParsingException, KeyError, ValueError, ) as e: logging.warning('[{}] {}: {}'.format( task['id'], e.__class__.__name__, str(e) )) return None return parsed class SAbDabDataset(Dataset): MAP_SIZE = 32*(1024*1024*1024) # 32GB def __init__( self, summary_path = './data/sabdab_summary_all.tsv', chothia_dir = './data/all_structures/chothia', processed_dir = './data/processed', split = 'train', split_seed = 2022, transform = None, reset = False, ): super().__init__() self.summary_path = summary_path self.chothia_dir = chothia_dir if not os.path.exists(chothia_dir): raise FileNotFoundError( f"SAbDab structures not found in {chothia_dir}. " "Please download them from http://opig.stats.ox.ac.uk/webapps/newsabdab/sabdab/archive/all/" ) self.processed_dir = processed_dir os.makedirs(processed_dir, exist_ok=True) self.sabdab_entries = None self._load_sabdab_entries() self.db_conn = None self.db_ids = None self._load_structures(reset) self.clusters = None self.id_to_cluster = None self._load_clusters(reset) self.ids_in_split = None self._load_split(split, split_seed) self.transform = transform def _load_sabdab_entries(self): df = pd.read_csv(self.summary_path, sep='\t') entries_all = [] for i, row in tqdm( df.iterrows(), dynamic_ncols=True, desc='Loading entries', total=len(df), ): entry_id = "{pdbcode}_{H}_{L}_{Ag}".format( pdbcode = row['pdb'], H = nan_to_empty_string(row['Hchain']), L = nan_to_empty_string(row['Lchain']), Ag = ''.join(split_sabdab_delimited_str( nan_to_empty_string(row['antigen_chain']) )) ) ag_chains = split_sabdab_delimited_str( nan_to_empty_string(row['antigen_chain']) ) resolution = parse_sabdab_resolution(row['resolution']) entry = { 'id': entry_id, 'pdbcode': row['pdb'], 'H_chain': nan_to_none(row['Hchain']), 'L_chain': nan_to_none(row['Lchain']), 'ag_chains': ag_chains, 'ag_type': nan_to_none(row['antigen_type']), 'ag_name': nan_to_none(row['antigen_name']), 'date': datetime.datetime.strptime(row['date'], '%m/%d/%y'), 'resolution': resolution, 'method': row['method'], 'scfv': row['scfv'], } # Filtering if ( (entry['ag_type'] in ALLOWED_AG_TYPES or entry['ag_type'] is None) and (entry['resolution'] is not None and entry['resolution'] <= RESOLUTION_THRESHOLD) ): entries_all.append(entry) self.sabdab_entries = entries_all def _load_structures(self, reset): if not os.path.exists(self._structure_cache_path) or reset: if os.path.exists(self._structure_cache_path): os.unlink(self._structure_cache_path) self._preprocess_structures() with open(self._structure_cache_path + '-ids', 'rb') as f: self.db_ids = pickle.load(f) self.sabdab_entries = list( filter( lambda e: e['id'] in self.db_ids, self.sabdab_entries ) ) @property def _structure_cache_path(self): return os.path.join(self.processed_dir, 'structures.lmdb') def _preprocess_structures(self): tasks = [] for entry in self.sabdab_entries: pdb_path = os.path.join(self.chothia_dir, '{}.pdb'.format(entry['pdbcode'])) if not os.path.exists(pdb_path): logging.warning(f"PDB not found: {pdb_path}") continue tasks.append({ 'id': entry['id'], 'entry': entry, 'pdb_path': pdb_path, }) data_list = joblib.Parallel( n_jobs = max(joblib.cpu_count() // 2, 1), )( joblib.delayed(preprocess_sabdab_structure)(task) for task in tqdm(tasks, dynamic_ncols=True, desc='Preprocess') ) db_conn = lmdb.open( self._structure_cache_path, map_size = self.MAP_SIZE, create=True, subdir=False, readonly=False, ) ids = [] with db_conn.begin(write=True, buffers=True) as txn: for data in tqdm(data_list, dynamic_ncols=True, desc='Write to LMDB'): if data is None: continue ids.append(data['id']) txn.put(data['id'].encode('utf-8'), pickle.dumps(data)) with open(self._structure_cache_path + '-ids', 'wb') as f: pickle.dump(ids, f) @property def _cluster_path(self): return os.path.join(self.processed_dir, 'cluster_result_cluster.tsv') def _load_clusters(self, reset): if not os.path.exists(self._cluster_path) or reset: self._create_clusters() clusters, id_to_cluster = {}, {} with open(self._cluster_path, 'r') as f: for line in f.readlines(): cluster_name, data_id = line.split() if cluster_name not in clusters: clusters[cluster_name] = [] clusters[cluster_name].append(data_id) id_to_cluster[data_id] = cluster_name self.clusters = clusters self.id_to_cluster = id_to_cluster def _create_clusters(self): cdr_records = [] for id in self.db_ids: structure = self.get_structure(id) if structure['heavy'] is not None: cdr_records.append(SeqRecord.SeqRecord( Seq.Seq(structure['heavy']['H3_seq']), id = structure['id'], name = '', description = '', )) elif structure['light'] is not None: cdr_records.append(SeqRecord.SeqRecord( Seq.Seq(structure['light']['L3_seq']), id = structure['id'], name = '', description = '', )) fasta_path = os.path.join(self.processed_dir, 'cdr_sequences.fasta') SeqIO.write(cdr_records, fasta_path, 'fasta') cmd = ' '.join([ 'mmseqs', 'easy-cluster', os.path.realpath(fasta_path), 'cluster_result', 'cluster_tmp', '--min-seq-id', '0.5', '-c', '0.8', '--cov-mode', '1', ]) subprocess.run(cmd, cwd=self.processed_dir, shell=True, check=True) def _load_split(self, split, split_seed): assert split in ('train', 'val', 'test') ids_test = [ entry['id'] for entry in self.sabdab_entries if entry['ag_name'] in TEST_ANTIGENS ] test_relevant_clusters = set([self.id_to_cluster[id] for id in ids_test]) ids_train_val = [ entry['id'] for entry in self.sabdab_entries if self.id_to_cluster[entry['id']] not in test_relevant_clusters ] random.Random(split_seed).shuffle(ids_train_val) if split == 'test': self.ids_in_split = ids_test elif split == 'val': self.ids_in_split = ids_train_val[:20] else: self.ids_in_split = ids_train_val[20:] def _connect_db(self): if self.db_conn is not None: return self.db_conn = lmdb.open( self._structure_cache_path, map_size=self.MAP_SIZE, create=False, subdir=False, readonly=True, lock=False, readahead=False, meminit=False, ) def get_structure(self, id): self._connect_db() with self.db_conn.begin() as txn: return pickle.loads(txn.get(id.encode())) def __len__(self): return len(self.ids_in_split) def __getitem__(self, index): id = self.ids_in_split[index] data = self.get_structure(id) if self.transform is not None: data = self.transform(data) return data @register_dataset('sabdab') def get_sabdab_dataset(cfg, transform): return SAbDabDataset( summary_path = cfg.summary_path, chothia_dir = cfg.chothia_dir, processed_dir = cfg.processed_dir, split = cfg.split, split_seed = cfg.get('split_seed', 2022), transform = transform, ) if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--split', type=str, default='train') parser.add_argument('--processed_dir', type=str, default='./data/processed') parser.add_argument('--reset', action='store_true', default=False) args = parser.parse_args() if args.reset: sure = input('Sure to reset? (y/n): ') if sure != 'y': exit() dataset = SAbDabDataset( processed_dir=args.processed_dir, split=args.split, reset=args.reset ) print(dataset[0]) print(len(dataset), len(dataset.clusters))