# Copyright 2022 Lunar Ring. All rights reserved. # Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch torch.backends.cudnn.benchmark = False torch.set_grad_enabled(False) import numpy as np import warnings warnings.filterwarnings('ignore') import warnings import torch from PIL import Image import torch from typing import Optional from omegaconf import OmegaConf from torch import autocast from contextlib import nullcontext from ldm.util import instantiate_from_config from ldm.models.diffusion.ddim import DDIMSampler from einops import repeat, rearrange from utils import interpolate_spherical def pad_image(input_image): pad_w, pad_h = np.max(((2, 2), np.ceil( np.array(input_image.size) / 64).astype(int)), axis=0) * 64 - input_image.size im_padded = Image.fromarray( np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge')) return im_padded def make_batch_superres( image, txt, device, num_samples=1): image = np.array(image.convert("RGB")) image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 batch = { "lr": rearrange(image, 'h w c -> 1 c h w'), "txt": num_samples * [txt], } batch["lr"] = repeat(batch["lr"].to(device=device), "1 ... -> n ...", n=num_samples) return batch def make_noise_augmentation(model, batch, noise_level=None): x_low = batch[model.low_scale_key] x_low = x_low.to(memory_format=torch.contiguous_format).float() x_aug, noise_level = model.low_scale_model(x_low, noise_level) return x_aug, noise_level class StableDiffusionHolder: def __init__(self, fp_ckpt: str = None, fp_config: str = None, num_inference_steps: int = 30, height: Optional[int] = None, width: Optional[int] = None, device: str = None, precision: str = 'autocast', ): r""" Initializes the stable diffusion holder, which contains the models and sampler. Args: fp_ckpt: File pointer to the .ckpt model file fp_config: File pointer to the .yaml config file num_inference_steps: Number of diffusion iterations. Will be overwritten by latent blending. height: Height of the resulting image. width: Width of the resulting image. device: Device to run the model on. precision: Precision to run the model on. """ self.seed = 42 self.guidance_scale = 5.0 if device is None: self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") else: self.device = device self.precision = precision self.init_model(fp_ckpt, fp_config) self.f = 8 # downsampling factor, most often 8 or 16" self.C = 4 self.ddim_eta = 0 self.num_inference_steps = num_inference_steps if height is None and width is None: self.init_auto_res() else: assert height is not None, "specify both width and height" assert width is not None, "specify both width and height" self.height = height self.width = width self.negative_prompt = [""] def init_model(self, fp_ckpt, fp_config): r"""Loads the models and sampler. """ assert os.path.isfile(fp_ckpt), f"Your model checkpoint file does not exist: {fp_ckpt}" self.fp_ckpt = fp_ckpt # Auto init the config? if fp_config is None: fn_ckpt = os.path.basename(fp_ckpt) if 'depth' in fn_ckpt: fp_config = 'configs/v2-midas-inference.yaml' elif 'upscaler' in fn_ckpt: fp_config = 'configs/x4-upscaling.yaml' elif '512' in fn_ckpt: fp_config = 'configs/v2-inference.yaml' elif '768' in fn_ckpt: fp_config = 'configs/v2-inference-v.yaml' elif 'v1-5' in fn_ckpt: fp_config = 'configs/v1-inference.yaml' else: raise ValueError("auto detect of config failed. please specify fp_config manually!") assert os.path.isfile(fp_config), "Auto-init of the config file failed. Please specify manually." assert os.path.isfile(fp_config), f"Your config file does not exist: {fp_config}" config = OmegaConf.load(fp_config) self.model = instantiate_from_config(config.model) self.model.load_state_dict(torch.load(fp_ckpt)["state_dict"], strict=False) self.model = self.model.to(self.device) self.sampler = DDIMSampler(self.model) def init_auto_res(self): r"""Automatically set the resolution to the one used in training. """ if '768' in self.fp_ckpt: self.height = 768 self.width = 768 else: self.height = 512 self.width = 512 def set_negative_prompt(self, negative_prompt): r"""Set the negative prompt. Currenty only one negative prompt is supported """ if isinstance(negative_prompt, str): self.negative_prompt = [negative_prompt] else: self.negative_prompt = negative_prompt if len(self.negative_prompt) > 1: self.negative_prompt = [self.negative_prompt[0]] def get_text_embedding(self, prompt): c = self.model.get_learned_conditioning(prompt) return c @torch.no_grad() def get_cond_upscaling(self, image, text_embedding, noise_level): r""" Initializes the conditioning for the x4 upscaling model. """ image = pad_image(image) # resize to integer multiple of 32 w, h = image.size noise_level = torch.Tensor(1 * [noise_level]).to(self.sampler.model.device).long() batch = make_batch_superres(image, txt="placeholder", device=self.device, num_samples=1) x_augment, noise_level = make_noise_augmentation(self.model, batch, noise_level) cond = {"c_concat": [x_augment], "c_crossattn": [text_embedding], "c_adm": noise_level} # uncond cond uc_cross = self.model.get_unconditional_conditioning(1, "") uc_full = {"c_concat": [x_augment], "c_crossattn": [uc_cross], "c_adm": noise_level} return cond, uc_full @torch.no_grad() def run_diffusion_standard( self, text_embeddings: torch.FloatTensor, latents_start: torch.FloatTensor, idx_start: int = 0, list_latents_mixing=None, mixing_coeffs=0.0, spatial_mask=None, return_image: Optional[bool] = False): r""" Diffusion standard version. Args: text_embeddings: torch.FloatTensor Text embeddings used for diffusion latents_for_injection: torch.FloatTensor or list Latents that are used for injection idx_start: int Index of the diffusion process start and where the latents_for_injection are injected mixing_coeff: mixing coefficients for latent blending spatial_mask: experimental feature for enforcing pixels from list_latents_mixing return_image: Optional[bool] Optionally return image directly """ # Asserts if type(mixing_coeffs) == float: list_mixing_coeffs = self.num_inference_steps * [mixing_coeffs] elif type(mixing_coeffs) == list: assert len(mixing_coeffs) == self.num_inference_steps list_mixing_coeffs = mixing_coeffs else: raise ValueError("mixing_coeffs should be float or list with len=num_inference_steps") if np.sum(list_mixing_coeffs) > 0: assert len(list_latents_mixing) == self.num_inference_steps precision_scope = autocast if self.precision == "autocast" else nullcontext with precision_scope("cuda"): with self.model.ema_scope(): if self.guidance_scale != 1.0: uc = self.model.get_learned_conditioning(self.negative_prompt) else: uc = None self.sampler.make_schedule(ddim_num_steps=self.num_inference_steps - 1, ddim_eta=self.ddim_eta, verbose=False) latents = latents_start.clone() timesteps = self.sampler.ddim_timesteps time_range = np.flip(timesteps) total_steps = timesteps.shape[0] # Collect latents list_latents_out = [] for i, step in enumerate(time_range): # Set the right starting latents if i < idx_start: list_latents_out.append(None) continue elif i == idx_start: latents = latents_start.clone() # Mix latents if i > 0 and list_mixing_coeffs[i] > 0: latents_mixtarget = list_latents_mixing[i - 1].clone() latents = interpolate_spherical(latents, latents_mixtarget, list_mixing_coeffs[i]) if spatial_mask is not None and list_latents_mixing is not None: latents = interpolate_spherical(latents, list_latents_mixing[i - 1], 1 - spatial_mask) index = total_steps - i - 1 ts = torch.full((1,), step, device=self.device, dtype=torch.long) outs = self.sampler.p_sample_ddim(latents, text_embeddings, ts, index=index, use_original_steps=False, quantize_denoised=False, temperature=1.0, noise_dropout=0.0, score_corrector=None, corrector_kwargs=None, unconditional_guidance_scale=self.guidance_scale, unconditional_conditioning=uc, dynamic_threshold=None) latents, pred_x0 = outs list_latents_out.append(latents.clone()) if return_image: return self.latent2image(latents) else: return list_latents_out @torch.no_grad() def run_diffusion_upscaling( self, cond, uc_full, latents_start: torch.FloatTensor, idx_start: int = -1, list_latents_mixing: list = None, mixing_coeffs: float = 0.0, return_image: Optional[bool] = False): r""" Diffusion upscaling version. """ # Asserts if type(mixing_coeffs) == float: list_mixing_coeffs = self.num_inference_steps * [mixing_coeffs] elif type(mixing_coeffs) == list: assert len(mixing_coeffs) == self.num_inference_steps list_mixing_coeffs = mixing_coeffs else: raise ValueError("mixing_coeffs should be float or list with len=num_inference_steps") if np.sum(list_mixing_coeffs) > 0: assert len(list_latents_mixing) == self.num_inference_steps precision_scope = autocast if self.precision == "autocast" else nullcontext h = uc_full['c_concat'][0].shape[2] w = uc_full['c_concat'][0].shape[3] with precision_scope("cuda"): with self.model.ema_scope(): shape_latents = [self.model.channels, h, w] self.sampler.make_schedule(ddim_num_steps=self.num_inference_steps - 1, ddim_eta=self.ddim_eta, verbose=False) C, H, W = shape_latents size = (1, C, H, W) b = size[0] latents = latents_start.clone() timesteps = self.sampler.ddim_timesteps time_range = np.flip(timesteps) total_steps = timesteps.shape[0] # collect latents list_latents_out = [] for i, step in enumerate(time_range): # Set the right starting latents if i < idx_start: list_latents_out.append(None) continue elif i == idx_start: latents = latents_start.clone() # Mix the latents. if i > 0 and list_mixing_coeffs[i] > 0: latents_mixtarget = list_latents_mixing[i - 1].clone() latents = interpolate_spherical(latents, latents_mixtarget, list_mixing_coeffs[i]) # print(f"diffusion iter {i}") index = total_steps - i - 1 ts = torch.full((b,), step, device=self.device, dtype=torch.long) outs = self.sampler.p_sample_ddim(latents, cond, ts, index=index, use_original_steps=False, quantize_denoised=False, temperature=1.0, noise_dropout=0.0, score_corrector=None, corrector_kwargs=None, unconditional_guidance_scale=self.guidance_scale, unconditional_conditioning=uc_full, dynamic_threshold=None) latents, pred_x0 = outs list_latents_out.append(latents.clone()) if return_image: return self.latent2image(latents) else: return list_latents_out @torch.no_grad() def latent2image( self, latents: torch.FloatTensor): r""" Returns an image provided a latent representation from diffusion. Args: latents: torch.FloatTensor Result of the diffusion process. """ x_sample = self.model.decode_first_stage(latents) x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0) x_sample = 255 * x_sample[0, :, :].permute([1, 2, 0]).cpu().numpy() image = x_sample.astype(np.uint8) return image