import torch import warnings from diffusers import AutoPipelineForText2Image from latentblending.blending_engine import BlendingEngine from lunar_tools import concatenate_movies import numpy as np torch.set_grad_enabled(False) torch.backends.cudnn.benchmark = False warnings.filterwarnings('ignore') import json # %% First let us spawn a stable diffusion holder. Uncomment your version of choice. # pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0" pretrained_model_name_or_path = "stabilityai/sdxl-turbo" pipe = AutoPipelineForText2Image.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16, variant="fp16") pipe.to('cuda') be = BlendingEngine(pipe, do_compile=False) fp_movie = f'test.mp4' fp_json = "movie_240221_1520.json" duration_single_trans = 10 # Load the JSON data from the file with open(fp_json, 'r') as file: data = json.load(file) # Set up width, height, num_inference steps width = data[0]["width"] height = data[0]["height"] num_inference_steps = data[0]["num_inference_steps"] be.set_dimensions((width, height)) be.set_num_inference_steps(num_inference_steps) # Initialize lists for prompts, negative prompts, and seeds list_prompts = [] list_negative_prompts = [] list_seeds = [] # Extract prompts, negative prompts, and seeds from the data for item in data[1:]: # Skip the first item as it contains settings list_prompts.append(item["prompt"]) list_negative_prompts.append(item["negative_prompt"]) list_seeds.append(item["seed"]) list_movie_parts = [] for i in range(len(list_prompts) - 1): # For a multi transition we can save some computation time and recycle the latents if i == 0: be.set_prompt1(list_prompts[i]) be.set_negative_prompt(list_negative_prompts[i]) be.set_prompt2(list_prompts[i + 1]) recycle_img1 = False else: be.swap_forward() be.set_negative_prompt(list_negative_prompts[i+1]) be.set_prompt2(list_prompts[i + 1]) recycle_img1 = True fp_movie_part = f"tmp_part_{str(i).zfill(3)}.mp4" fixed_seeds = list_seeds[i:i + 2] # Run latent blending be.run_transition( recycle_img1=recycle_img1, fixed_seeds=fixed_seeds) # Save movie be.write_movie_transition(fp_movie_part, duration_single_trans) list_movie_parts.append(fp_movie_part) # Finally, concatente the result concatenate_movies(fp_movie, list_movie_parts) print(f"DONE! MOVIE SAVED IN {fp_movie}")