import json from typing import Any, Dict, Union import requests from llama_cpp import json_schema_to_gbnf # The llama_cpp Python HTTP server communicates with the AI model, similar # to the OpenAI API but adds a unique "grammar" parameter. # The real OpenAI API has other ways to set the output format. URL = "http://localhost:5834/v1/chat/completions" def llm_streaming( prompt: str, pydantic_model_class, return_pydantic_object=False ) -> Union[str, Dict[str, Any]]: schema = pydantic_model_class.model_json_schema() # Optional example field from schema, is not needed for the grammar generation if "example" in schema: del schema["example"] json_schema = json.dumps(schema) grammar = json_schema_to_gbnf(json_schema) payload = { "stream": True, "max_tokens": 1000, "grammar": grammar, "temperature": 0.7, "messages": [{"role": "user", "content": prompt}], } headers = { "Content-Type": "application/json", } response = requests.post( URL, headers=headers, json=payload, stream=True, ) output_text = "" for chunk in response.iter_lines(): if chunk: chunk = chunk.decode("utf-8") if chunk.startswith("data: "): chunk = chunk.split("data: ")[1] if chunk.strip() == "[DONE]": break chunk = json.loads(chunk) new_token = chunk.get("choices")[0].get("delta").get("content") if new_token: output_text = output_text + new_token print(new_token, sep="", end="", flush=True) print('\n') if return_pydantic_object: model_object = pydantic_model_class.model_validate_json(output_text) return model_object else: json_output = json.loads(output_text) return json_output def replace_text(template: str, replacements: dict) -> str: for key, value in replacements.items(): template = template.replace(f"{{{key}}}", value) return template def query_ai_prompt(prompt, replacements, model_class): prompt = replace_text(prompt, replacements) return llm_streaming(prompt, model_class) def calculate_overall_score(faithfulness, spiciness): baseline_weight = 0.8 overall = faithfulness + (1 - baseline_weight) * spiciness * faithfulness return overall