import tensorflow as tf import keras # Originally TensorFlow 2.13.0 Keras 2.13.1 print(tf.__version__) print(keras.__version__) # Load the old model using the folder inference_layer = keras.layers.TFSMLayer('saved_model/', call_endpoint='serving_default') # Specify the model architecture using an inference layer model = tf.keras.Sequential([ inference_layer, ]) # compile the model using the same parameters when first training the model model.compile(optimizer="adam", loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=["accuracy"]) # save the model as a .keras file (in line with Keras 3 specifications) model.save("leaf_model.keras")