import tensorflow as tf | |
import keras | |
# Originally TensorFlow 2.13.0 Keras 2.13.1 | |
print(tf.__version__) | |
print(keras.__version__) | |
# Load the old model using the folder | |
inference_layer = keras.layers.TFSMLayer('saved_model/', call_endpoint='serving_default') | |
# Specify the model architecture using an inference layer | |
model = tf.keras.Sequential([ | |
inference_layer, | |
]) | |
# compile the model using the same parameters when first training the model | |
model.compile(optimizer="adam", | |
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), | |
metrics=["accuracy"]) | |
# save the model as a .keras file (in line with Keras 3 specifications) | |
model.save("leaf_model.keras") | |