import numpy as np import gradio as gr import requests import time import json import base64 import os from PIL import Image from io import BytesIO class Prodia: def __init__(self, api_key, base=None): self.base = base or "https://api.prodia.com/v1" self.headers = { "X-Prodia-Key": api_key } def generate(self, params): response = self._post(f"{self.base}/sdxl/generate", params) return response.json() def get_job(self, job_id): response = self._get(f"{self.base}/job/{job_id}") return response.json() def wait(self, job): job_result = job while job_result['status'] not in ['succeeded', 'failed']: time.sleep(0.25) job_result = self.get_job(job['job']) return job_result def list_models(self): response = self._get(f"{self.base}/sdxl/models") return response.json() def list_samplers(self): response = self._get(f"{self.base}/sdxl/samplers") return response.json() def _post(self, url, params): headers = { **self.headers, "Content-Type": "application/json" } response = requests.post(url, headers=headers, data=json.dumps(params)) if response.status_code != 200: raise Exception(f"Bad Prodia Response: {response.status_code}") return response def _get(self, url): response = requests.get(url, headers=self.headers) if response.status_code != 200: raise Exception(f"Bad Prodia Response: {response.status_code}") return response def image_to_base64(image_path): # Open the image with PIL with Image.open(image_path) as image: # Convert the image to bytes buffered = BytesIO() image.save(buffered, format="PNG") # You can change format to PNG if needed # Encode the bytes to base64 img_str = base64.b64encode(buffered.getvalue()) return img_str.decode('utf-8') # Convert bytes to string prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY")) def flip_text(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed): result = prodia_client.generate({ "prompt": prompt, "negative_prompt": negative_prompt, "model": model, "steps": steps, "sampler": sampler, "cfg_scale": cfg_scale, "width": width, "height": height, "seed": seed }) job = prodia_client.wait(result) return job["imageUrl"] css = """ #generate { height: 100%; } """ with gr.Blocks(css=css) as demo: with gr.Row(): with gr.Column(scale=6): model = gr.Dropdown(interactive=True,value="sd_xl_base_1.0.safetensors [be9edd61]", show_label=True, label="Stable Diffusion Checkpoint", choices=prodia_client.list_models()) with gr.Column(scale=1): gr.Markdown(elem_id="powered-by-prodia", value="AUTOMATIC1111 Stable Diffusion Web UI for SDXL V1.0.
Powered by Prodia.
It will not automatically save the image you generated so please don't forget the imnage that you like.") with gr.Tab("txt2img"): with gr.Row(): with gr.Column(scale=6, min_width=600): prompt = gr.Textbox(placeholder="Prompt (What you want to see in the image)", show_label=False, lines=3) negative_prompt = gr.Textbox(placeholder="Negative Prompt (What you don't want to see in the image)", show_label=False, lines=3,) with gr.Column(): text_button = gr.Button("Generate", variant='primary', elem_id="generate") with gr.Row(): with gr.Column(scale=3): with gr.Tab("Generation"): with gr.Row(): with gr.Column(scale=1): sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers()) with gr.Column(scale=1): steps = gr.Slider(label="Sampling Steps(How many times the AI is going to improve the initial image)", minimum=1, maximum=50, value=25, step=1) with gr.Row(): with gr.Column(scale=1): width = gr.Slider(label="Width", minimum=512, maximum=1536, value=1024, step=8) height = gr.Slider(label="Height", minimum=512, maximum=1536, value=1024, step=8) gr.Markdown(elem_id="resolution", value="*Resolution Maximum: 1MP (1048576 px)*") with gr.Column(scale=1): batch_size = gr.Slider(label="Batch Size", maximum=1, value=1) batch_count = gr.Slider(label="Batch Count", maximum=1, value=1) cfg_scale = gr.Slider(label="CFG Scale(How much does the AI follow the promts)", minimum=1, maximum=25, value=7.5, step=1) seed = gr.Number(label="Seed(could be any number; -1 gives you a random number)", value=-1) with gr.Column(scale=2): image_output = gr.Image(value="https://scontent.cdninstagram.com/v/t51.29350-15/431370105_2616125331898278_6514352555784579245_n.webp?stp=dst-jpg_e35_p720x720&efg=eyJ2ZW5jb2RlX3RhZyI6ImltYWdlX3VybGdlbi4xMDgweDE5MjAuc2RyIn0&_nc_ht=scontent.cdninstagram.com&_nc_cat=106&_nc_ohc=tFxsl3ryJT0AX-p5JYa&edm=APs17CUBAAAA&ccb=7-5&ig_cache_key=MzMxNTQ0NTk4MjQ0Njk0ODA0MA%3D%3D.2-ccb7-5&oh=00_AfDsHKW6Zq51QeW3whGeAR1Mf2EttCojf7lJh_GdPL2uAQ&oe=65F075D9&_nc_sid=10d13b") text_button.click(flip_text, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed,], outputs=image_output) demo.queue(concurrency_count=24, max_size=32, api_open=False).launch(max_threads=128)