import os os.system('pip install -e .') import gradio as gr import base64 from io import BytesIO # from fastapi import FastAPI from PIL import Image import torch as th from glide_text2im.download import load_checkpoint from glide_text2im.model_creation import ( create_model_and_diffusion, model_and_diffusion_defaults, model_and_diffusion_defaults_upsampler ) # print("Loading models...") # app = FastAPI() # This notebook supports both CPU and GPU. # On CPU, generating one sample may take on the order of 20 minutes. # On a GPU, it should be under a minute. """ credit: follows the gradio glide example by valhalla https://huggingface.co/spaces/valhalla/glide-text2im """ has_cuda = th.cuda.is_available() device = th.device('cpu' if not has_cuda else 'cuda') # Create base model. options = model_and_diffusion_defaults() options['use_fp16'] = has_cuda options['timestep_respacing'] = '100' # use 100 diffusion steps for fast sampling model, diffusion = create_model_and_diffusion(**options) model.eval() if has_cuda: model.convert_to_fp16() model.to(device) model.load_state_dict(load_checkpoint('base', device)) print('total base parameters', sum(x.numel() for x in model.parameters())) # Create upsampler model. options_up = model_and_diffusion_defaults_upsampler() options_up['use_fp16'] = has_cuda options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling model_up, diffusion_up = create_model_and_diffusion(**options_up) model_up.eval() if has_cuda: model_up.convert_to_fp16() model_up.to(device) model_up.load_state_dict(load_checkpoint('upsample', device)) print('total upsampler parameters', sum(x.numel() for x in model_up.parameters())) def get_images(batch: th.Tensor): """ Display a batch of images inline. """ scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu() reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3]) return Image.fromarray(reshaped.numpy()) # Create a classifier-free guidance sampling function guidance_scale = 3.0 def model_fn(x_t, ts, **kwargs): half = x_t[: len(x_t) // 2] combined = th.cat([half, half], dim=0) model_out = model(combined, ts, **kwargs) eps, rest = model_out[:, :3], model_out[:, 3:] cond_eps, uncond_eps = th.split(eps, len(eps) // 2, dim=0) half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps) eps = th.cat([half_eps, half_eps], dim=0) return th.cat([eps, rest], dim=1) # @app.get("/") def read_root(): return {"glide!"} # @app.get("/{generate}") def sample(prompt): # Sampling parameters batch_size = 1 # Tune this parameter to control the sharpness of 256x256 images. # A value of 1.0 is sharper, but sometimes results in grainy artifacts. upsample_temp = 0.997 ############################## # Sample from the base model # ############################## # Create the text tokens to feed to the model. tokens = model.tokenizer.encode(prompt) tokens, mask = model.tokenizer.padded_tokens_and_mask( tokens, options['text_ctx'] ) # Create the classifier-free guidance tokens (empty) full_batch_size = batch_size * 2 uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask( [], options['text_ctx'] ) # Pack the tokens together into model kwargs. model_kwargs = dict( tokens=th.tensor( [tokens] * batch_size + [uncond_tokens] * batch_size, device=device ), mask=th.tensor( [mask] * batch_size + [uncond_mask] * batch_size, dtype=th.bool, device=device, ), ) # Sample from the base model. model.del_cache() samples = diffusion.p_sample_loop( model_fn, (full_batch_size, 3, options["image_size"], options["image_size"]), device=device, clip_denoised=True, progress=True, model_kwargs=model_kwargs, cond_fn=None, )[:batch_size] model.del_cache() ############################## # Upsample the 64x64 samples # ############################## tokens = model_up.tokenizer.encode(prompt) tokens, mask = model_up.tokenizer.padded_tokens_and_mask( tokens, options_up['text_ctx'] ) # Create the model conditioning dict. model_kwargs = dict( # Low-res image to upsample. low_res=((samples+1)*127.5).round()/127.5 - 1, # Text tokens tokens=th.tensor( [tokens] * batch_size, device=device ), mask=th.tensor( [mask] * batch_size, dtype=th.bool, device=device, ), ) # Sample from the base model. model_up.del_cache() up_shape = (batch_size, 3, options_up["image_size"], options_up["image_size"]) up_samples = diffusion_up.ddim_sample_loop( model_up, up_shape, noise=th.randn(up_shape, device=device) * upsample_temp, device=device, clip_denoised=True, progress=True, model_kwargs=model_kwargs, cond_fn=None, )[:batch_size] model_up.del_cache() # Show the output image = get_images(up_samples) # image = to_base64(image) # return {"image": image} return image def to_base64(pil_image): buffered = BytesIO() pil_image.save(buffered, format="JPEG") return base64.b64encode(buffered.getvalue()) title = "glide test" description = "text conditioned image generation demo using openai's GLIDE model (text-guided diffusion model) https://arxiv.org/abs/2112.10741 & https://github.com/openai/glide-text2im/. should take ~500s to run. credit to valhalla for gradio template https://huggingface.co/spaces/valhalla/." iface = gr.Interface(fn=sample, inputs=gr.inputs.Textbox(label='enter text'), outputs=gr.outputs.Image(type="pil", label="model input + completions"), title=title, description=description) iface.launch(debug=True,enable_queue=True, show_error=True,share=True)