from huggingface_hub import from_pretrained_fastai import gradio as gr from fastai.vision.all import * from pathlib import Path import PIL import torchvision.transforms as transforms device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = torch.jit.load("unet.pth") model = model.cpu() model.eval() def transform_image(image): my_transforms = transforms.Compose([transforms.ToTensor(), transforms.Normalize( [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) image_aux = image image = transforms.Resize((480,640))(Image.fromarray(image)) tensor = my_transforms(image_aux).unsqueeze(0).to(device) model.to(device) with torch.no_grad(): outputs = model(tensor) outputs = torch.argmax(outputs,1) mask = np.array(outputs.cpu()) mask[mask==0]=255 mask[mask==1]=150 mask[mask==2]=76 mask[mask==3]=25 mask[mask==4]=0 mask=np.reshape(mask,(480,640)) return Image.fromarray(mask.astype('uint8')) # Creamos la interfaz y la lanzamos. gr.Interface(fn=transform_image, inputs=gr.inputs.Image(shape=(640, 480)), outputs=gr.outputs.Image(),examples=['color_188.jpg','color_189.jpg']).launch(share=False)