#!/usr/bin/env python import numpy as np import pandas as pd from sklearn.svm import SVC from sklearn.decomposition import PCA from sklearn.linear_model import LogisticRegression, LinearRegression from sklearn.model_selection import train_test_split from tqdm import tqdm import random from os.path import join import os import pickle import torch import matplotlib.pyplot as plt import PIL from PIL import Image, ImageColor import sys sys.path.append('backend') from color_annotations import extract_color from networks_stylegan3 import * sys.path.append('.') import dnnlib import legacy def hex2rgb(hex_value): h = hex_value.strip("#") rgb = tuple(int(h[i:i+2], 16) for i in (0, 2, 4)) return rgb def rgb2hsv(r, g, b): # Normalize R, G, B values r, g, b = r / 255.0, g / 255.0, b / 255.0 # h, s, v = hue, saturation, value max_rgb = max(r, g, b) min_rgb = min(r, g, b) difference = max_rgb-min_rgb # if max_rgb and max_rgb are equal then h = 0 if max_rgb == min_rgb: h = 0 # if max_rgb==r then h is computed as follows elif max_rgb == r: h = (60 * ((g - b) / difference) + 360) % 360 # if max_rgb==g then compute h as follows elif max_rgb == g: h = (60 * ((b - r) / difference) + 120) % 360 # if max_rgb=b then compute h elif max_rgb == b: h = (60 * ((r - g) / difference) + 240) % 360 # if max_rgb==zero then s=0 if max_rgb == 0: s = 0 else: s = (difference / max_rgb) * 100 # compute v v = max_rgb * 100 # return rounded values of H, S and V return tuple(map(round, (h, s, v))) class DisentanglementBase: def __init__(self, repo_folder, model, annotations, df, space, colors_list, compute_s=False, variable='H1', categorical=True): self.device = 'cuda' if torch.cuda.is_available() else 'cpu' print('Using device', self.device) self.repo_folder = repo_folder self.model = model.to(self.device) self.annotations = annotations self.df = df self.space = space self.categorical = categorical self.variable = variable self.layers = ['input', 'L0_36_512', 'L1_36_512', 'L2_36_512', 'L3_52_512', 'L4_52_512', 'L5_84_512', 'L6_84_512', 'L7_148_512', 'L8_148_512', 'L9_148_362', 'L10_276_256', 'L11_276_181', 'L12_276_128', 'L13_256_128', 'L14_256_3'] self.layers_shapes = [4, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 362, 256, 181, 128, 128] self.decoding_layers = 16 self.colors_list = colors_list self.to_hsv() if compute_s: self.get_s_space() def to_hsv(self): """ The tohsv function takes the top 3 colors of each image and converts them to HSV values. It then adds these values as new columns in the dataframe. :param self: Allow the function to access the dataframe :return: The dataframe with the new columns added :doc-author: Trelent """ print('Adding HSV encoding') self.df['H1'] = self.df['top1col'].map(lambda x: rgb2hsv(*hex2rgb(x))[0]) self.df['H2'] = self.df['top2col'].map(lambda x: rgb2hsv(*hex2rgb(x))[0]) self.df['H3'] = self.df['top3col'].map(lambda x: rgb2hsv(*hex2rgb(x))[0]) self.df['S1'] = self.df['top1col'].map(lambda x: rgb2hsv(*hex2rgb(x))[1]) self.df['S2'] = self.df['top2col'].map(lambda x: rgb2hsv(*hex2rgb(x))[1]) self.df['S3'] = self.df['top3col'].map(lambda x: rgb2hsv(*hex2rgb(x))[1]) self.df['V1'] = self.df['top1col'].map(lambda x: rgb2hsv(*hex2rgb(x))[2]) self.df['V2'] = self.df['top2col'].map(lambda x: rgb2hsv(*hex2rgb(x))[2]) self.df['V3'] = self.df['top3col'].map(lambda x: rgb2hsv(*hex2rgb(x))[2]) print('Adding RGB encoding') self.df['R1'] = self.df['top1col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[0]) self.df['R2'] = self.df['top2col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[0]) self.df['R3'] = self.df['top3col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[0]) self.df['G1'] = self.df['top1col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[1]) self.df['G2'] = self.df['top2col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[1]) self.df['G3'] = self.df['top3col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[1]) self.df['B1'] = self.df['top1col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[2]) self.df['B2'] = self.df['top2col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[2]) self.df['B3'] = self.df['top3col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[2]) return self.df def get_encoded_latent(self): # ... (existing code for getX) if self.space.lower() == 'w': X = np.array(self.annotations['w_vectors']).reshape((len(self.annotations['w_vectors']), 512)) elif self.space.lower() == 'z': X = np.array(self.annotations['z_vectors']).reshape((len(self.annotations['z_vectors']), 512)) elif self.space.lower() == 's': concat_v = [] for i in range(len(self.annotations['w_vectors'])): concat_v.append(np.concatenate(self.annotations['s_vectors'][i], axis=1)) X = np.array(concat_v) X = X[:, 0, :] else: Exception("Sorry, option not available, select among Z, W, S") print('Shape embedding:', X.shape) return X def get_train_val(self, extremes=False): X = self.get_encoded_latent() y = np.array(self.df[self.variable].values) if self.categorical: y_cat = pd.cut(y, bins=[x * 360 / len(self.colors_list) if x < len(self.colors_list) else 360 for x in range(len(self.colors_list) + 1)], labels=self.colors_list ).fillna(self.colors_list[0]) x_train, x_val, y_train, y_val = train_test_split(X, y_cat, test_size=0.2) else: if extremes: # Calculate the number of elements to consider (10% of array size) num_elements = int(0.2 * len(y)) # Get indices of the top num_elements maximum values top_indices = np.argpartition(array, -num_elements)[-num_elements:] bottom_indices = np.argpartition(array, -num_elements)[:num_elements] y_ext = y[top_indices + bottom_indices, :] X_ext = X[top_indices + bottom_indices, :] x_train, x_val, y_train, y_val = train_test_split(X_ext, y_ext, test_size=0.2) else: x_train, x_val, y_train, y_val = train_test_split(X, y, test_size=0.2) return x_train, x_val, y_train, y_val def generate_orig_image(self, vec, seed=False): """ The generate_original_image function takes in a latent vector and the model, and returns an image generated from that latent vector. :param z: Generate the image :param model: Generate the image :return: A pil image :doc-author: Trelent """ G = self.model.to(self.device) # type: ignore # Labels. label = torch.zeros([1, G.c_dim], device=self.device) if seed: seed = vec vec = self.annotations['z_vectors'][seed] Z = torch.from_numpy(vec.copy()).to(self.device) img = G(Z, label, truncation_psi=1, noise_mode='const') img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) img = PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB') return img def main(): repo_folder = '.' annotations_file = join(repo_folder, 'data/textile_annotated_files/seeds0000-100000_S.pkl') with open(annotations_file, 'rb') as f: annotations = pickle.load(f) df_file = join(repo_folder, 'data/textile_annotated_files/top_three_colours.csv') df = pd.read_csv(df_file).fillna('#000000') model_file = join(repo_folder, 'data/textile_model_files/network-snapshot-005000.pkl') with dnnlib.util.open_url(model_file) as f: model = legacy.load_network_pkl(f)['G_ema'] # type: ignore colors_list = ['Red', 'Orange', 'Yellow', 'Yellow Green', 'Chartreuse Green', 'Kelly Green', 'Green Blue Seafoam', 'Cyan Blue', 'Warm Blue', 'Indigo', 'Purple Magenta', 'Magenta Pink'] colors_list = ['Red Orange', 'Yellow', 'Green', 'Light Blue', 'Blue', 'Purple', 'Pink'] disentanglemnet_exp = DisentanglementBase(repo_folder, model, annotations, df, space='w', colors_list=colors_list) # x_train, x_val, y_train, y_val = disentanglemnet_exp.get_train_val() # print(colors_list) # print(np.unique(y_train, return_counts=True)) # for i, color in enumerate(colors_list): # idxs = np.where(y_train == color) # x_color = x_train[idxs][:30, :] # print(x_color.shape) # print('Generating images of color ' + color) # for j, vec in enumerate(x_color): # vec = np.expand_dims(vec, axis=0) # img = disentanglemnet_exp.generate_orig_image(vec) # img.save(f'{repo_folder}/colors_test/color_{color}_{j}.png') df = disentanglemnet_exp.to_hsv() df['color'] = pd.cut(df['H1'], bins=[x * 360 / len(colors_list) if x < len(colors_list) else 360 for x in range(len(colors_list) + 1)], labels=colors_list ).fillna(colors_list[0]) print(df['color'].value_counts()) df['seed'] = df['fname'].str.split('/').apply(lambda x: x[-1]).str.replace('seed', '').str.replace('.png','').astype(int) print(df[df['seed'] == 3][['H1', 'S1', 'V1', 'R1', 'B1', 'G1']]) for i, color in enumerate(colors_list): idxs = df['color'] == color x_color = df['seed'][idxs][:30] print('Generating images of color ' + color) for j, vec in enumerate(x_color): img = disentanglemnet_exp.generate_orig_image(int(vec), seed=True) img.save(f'{repo_folder}/colors_test/color_{color}_{j}corrected.png') if __name__ == "__main__": main()