import numpy as np from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split import torch from umap import UMAP import PIL def get_separation_space(type_bin, annotations, df, samples=100, method='LR', C=0.1): abstracts = np.array([float(ann) for ann in df[type_bin]]) abstract_idxs = list(np.argsort(abstracts))[:samples] repr_idxs = list(np.argsort(abstracts))[-samples:] X = np.array([annotations['z_vectors'][i] for i in abstract_idxs+repr_idxs]) X = X.reshape((2*samples, 512)) y = np.array([1]*samples + [0]*samples) x_train, x_val, y_train, y_val = train_test_split(X, y, test_size=0.2) if method == 'SVM': svc = SVC(gamma='auto', kernel='linear', random_state=0, C=C) svc.fit(x_train, y_train) print('Val performance SVM', svc.score(x_val, y_val)) imp_features = (np.abs(svc.coef_) > 0.2).sum() imp_nodes = np.where(np.abs(svc.coef_) > 0.2)[1] return svc.coef_, imp_features, imp_nodes elif method == 'LR': clf = LogisticRegression(random_state=0, C=C) clf.fit(x_train, y_train) print('Val performance logistic regression', clf.score(x_val, y_val)) imp_features = (np.abs(clf.coef_) > 0.2).sum() imp_nodes = np.where(np.abs(clf.coef_) > 0.2)[1] return clf.coef_, imp_features, imp_nodes def regenerate_images(model, z, decision_boundary, min_epsilon=-3, max_epsilon=3, count=5): device = torch.device('cpu') G = model.to(device) # type: ignore # Labels. label = torch.zeros([1, G.c_dim], device=device) z = torch.from_numpy(z.copy()).to(device) decision_boundary = torch.from_numpy(decision_boundary.copy()).to(device) lambdas = np.linspace(min_epsilon, max_epsilon, count) images = [] # Generate images. for _, lambda_ in enumerate(lambdas): z_0 = z + lambda_ * decision_boundary # Construct an inverse rotation/translation matrix and pass to the generator. The # generator expects this matrix as an inverse to avoid potentially failing numerical # operations in the network. #if hasattr(G.synthesis, 'input'): #m = make_transform(translate, rotate) #m = np.linalg.inv(m) #G.synthesis.input.transform.copy_(torch.from_numpy(m)) img = G(z_0, label, truncation_psi=0.7, noise_mode='random') img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) images.append(PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB')) return images, lambdas def generate_original_image(z, model): device = torch.device('cpu') G = model.to(device) # type: ignore # Labels. label = torch.zeros([1, G.c_dim], device=device) z = torch.from_numpy(z.copy()).to(device) img = G(z, label, truncation_psi=0.7, noise_mode='random') img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) return PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB') def get_concepts_vectors(concepts, annotations, df, samples=100, method='LR', C=0.1): important_nodes = [] vectors = np.zeros((len(concepts), 512)) for i, conc in enumerate(concepts): vec, _, imp_nodes = get_separation_space(conc, annotations, df, samples=samples, method=method, C=C) vectors[i,:] = vec important_nodes.append(set(imp_nodes)) reducer = UMAP(n_neighbors=3, # default 15, The size of local neighborhood (in terms of number of neighboring sample points) used for manifold approximation. n_components=3, # default 2, The dimension of the space to embed into. min_dist=0.1, # default 0.1, The effective minimum distance between embedded points. spread=2.0, # default 1.0, The effective scale of embedded points. In combination with ``min_dist`` this determines how clustered/clumped the embedded points are. random_state=0, # default: None, If int, random_state is the seed used by the random number generator; ) projection = reducer.fit_transform(vectors) nodes_in_common = set.intersection(*important_nodes) return vectors, projection, nodes_in_common