import transformers import datasets from transformers import AutoFeatureExtractor, AutoModelForImageClassification dataset = load_dataset('beans') extractor = AutoFeatureExtractor.from_pretrained("saved_model_files") model = AutoModelForImageClassification.from_pretrained("saved_model_files") labels = dataset['train'].features['labels'].names example_imgs = ["example_0.jpg", "example_1.jpg","example_2.jpg"] def classify(im): features = feature_extractor(im, return_tensors='pt') logits = model(features["pixel_values"])[-1] probability = torch.nn.functional.softmax(logits, dim=-1) probs = probability[0].detach().numpy() confidences = {label: float(probs[i]) for i, label in enumerate(labels)} return confidences import gradio as gr interface = gr.Interface(classify, inputs='image', outputs='label', title='Bean Classification', description='Check the health of your bean leaves', examples = example_imgs) interface.launch(debug=True)