import gradio as gr import model_wrapper model = model_wrapper.PredictionModel() def pretty_print_opinion(opinion_dict): res = [] maxlen = max([len(key) for key in opinion_dict.keys()]) + 2 maxlen = 0 for key, value in opinion_dict.items(): if key == 'Polarity': res.append(f'{(key + ":").ljust(maxlen)} {value}') else: res.append(f'{(key + ":").ljust(maxlen)} \'{" ".join(value[0])}\'') return '\n'.join(res) + '\n' def predict(text): predictions = model.predict([text]) prediction = predictions[0] results = [] if not prediction['opinions']: return 'No opinions detected' for opinion in prediction['opinions']: results.append(pretty_print_opinion(opinion)) return '\n'.join(results) markdown_text = '''

This space provides a gradio demo and an easy-to-run wrapper of the pre-trained model for structured sentiment analysis in Norwegian language, pre-trained on the [NoReC dataset](https://huggingface.co/datasets/norec). This model is an implementation of the paper "Direct parsing to sentiment graphs" (Samuel _et al._, ACL 2022). The main repository that also contains the scripts for training the model, can be found on the project [github](https://github.com/jerbarnes/direct_parsing_to_sent_graph). The current model uses the 'labeled-edge' graph encoding, and achieves the following results on the NoReC dataset: | Unlabeled sentiment tuple F1 | Target F1 | Relative polarity precision | |:----------------------------:|:----------:|:---------------------------:| | 0.393 | 0.468 | 0.939 | The model can be easily used for predicting sentiment tuples as follows: ```python >>> import model_wrapper >>> model = model_wrapper.PredictionModel() >>> model.predict(['vi liker svart kaffe']) [{'sent_id': '0', 'text': 'vi liker svart kaffe', 'opinions': [{'Source': [['vi'], ['0:2']], 'Target': [['svart', 'kaffe'], ['9:14', '15:20']], 'Polar_expression': [['liker'], ['3:8']], 'Polarity': 'Positive'}]}] ``` ''' with gr.Blocks() as demo: with gr.Row(equal_height=False) as row: text_input = gr.Textbox(label="input") text_output = gr.Textbox(label="output") with gr.Row(scale=4) as row: text_button = gr.Button("submit").style(full_width=True) text_button.click(fn=predict, inputs=text_input, outputs=text_output) gr.Markdown(markdown_text) demo.launch()