--- title: Sentiment Analysis emoji: 🤔 colorFrom: purple colorTo: yellow sdk: gradio sdk_version: 3.1.7 app_file: app.py pinned: false --- This space provides a gradio demo and an easy-to-run wrapper of the pre-trained model for structured sentiment analysis in Norwegian language, pre-trained on the [NoReC dataset](https://huggingface.co/datasets/norec). This model is an implementation of the paper "Direct parsing to sentiment graphs" (Samuel _et al._, ACL 2022). The main repository that also contains the scripts for training the model, can be found on the project [github](https://github.com/jerbarnes/direct_parsing_to_sent_graph). The current model uses the 'labeled-edge' graph encoding, and achieves the following results on the NoReC dataset: | Unlabeled sentiment tuple F1 | Target F1 | Relative polarity precision | |:----------------------------:|:----------:|:---------------------------:| | 0.393 | 0.468 | 0.939 | The model can be easily used for predicting sentiment tuples as follows: ```python >>> import model_wrapper >>> model = model_wrapper.PredictionModel() >>> model.predict(['vi liker svart kaffe']) [{'sent_id': '0', 'text': 'vi liker svart kaffe', 'opinions': [{'Source': [['vi'], ['0:2']], 'Target': [['svart', 'kaffe'], ['9:14', '15:20']], 'Polar_expression': [['liker'], ['3:8']], 'Polarity': 'Positive'}]}] ```