import gradio as gr import torch from fastai.vision.all import * from PIL import ImageFilter, ImageEnhance, ImageDraw from diffusers.utils import make_image_grid from tqdm import tqdm from diffusers import AutoPipelineForInpainting, LCMScheduler, DDIMScheduler from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel import numpy as np from PIL import Image from datetime import datetime preferred_device = "cuda" if torch.cuda.is_available() else "cpu" preferred_dtype = torch.float32 if preferred_device == 'cpu' else torch.float16 def label_func(fn): return path/"labels"/f"{fn.stem}_P{fn.suffix}" segmodel = load_learner("camvid-512.pkl") inpainting_pipeline = AutoPipelineForInpainting.from_pretrained( "runwayml/stable-diffusion-inpainting", revision="fp16", torch_dtype=preferred_dtype, ).to(preferred_device) working_size = (512, 512) default_inpainting_prompt = "watercolor of a leafy pedestrian mall at golden hour with multiracial genderqueer joggers and bicyclists and wheelchair users talking and laughing" seg_vocabulary = ['Animal', 'Archway', 'Bicyclist', 'Bridge', 'Building', 'Car', 'CartLuggagePram', 'Child', 'Column_Pole', 'Fence', 'LaneMkgsDriv', 'LaneMkgsNonDriv', 'Misc_Text', 'MotorcycleScooter', 'OtherMoving', 'ParkingBlock', 'Pedestrian', 'Road', 'RoadShoulder', 'Sidewalk', 'SignSymbol', 'Sky', 'SUVPickupTruck', 'TrafficCone', 'TrafficLight', 'Train', 'Tree', 'Truck_Bus', 'Tunnel', 'VegetationMisc', 'Void', 'Wall'] ban_cars_mask = np.array([0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0], dtype=np.uint8) def get_seg_mask(img): mask = segmodel.predict(img)[0] return mask def app(img, prompt): start_time = datetime.now().timestamp() old_size = Image.fromarray(img).size img = np.array(Image.fromarray(img).resize(working_size)) mask = ban_cars_mask[get_seg_mask(img)] * 255 mask_time = datetime.now().timestamp() print(prompt.__class__, img.__class__, mask.__class__, img.shape, mask.shape) overlay_img = inpainting_pipeline( prompt=prompt, image=img, mask_image=mask, strength=0.95, num_inference_steps=20, ).images[0] end_time = datetime.now().timestamp() draw = ImageDraw.Draw(overlay_img) # replace spaces with newlines after many words to line break prompt prompt = " ".join([prompt.split(" ")[i] if (i+1) % 5 else prompt.split(" ")[i] + "\n" for i in range(len(prompt.split(" ")))]) draw.text((50, 10), f"Old size: {old_size}\nTotal duration: {int(1000 * (end_time - start_time))}ms\nSegmentation {int(1000 * (mask_time - start_time))}ms / inpainting {int(1000 * (end_time - mask_time))} \n<{prompt}>", fill=(255, 255, 255)) return overlay_img #ideally: #iface = gr.Interface(app, gr.Image(sources=["webcam"], streaming=True), "image", live=True) iface = gr.Interface(app, [gr.Image(), gr.Textbox(value=default_inpainting_prompt)], "image") iface.launch()