import streamlit as st from llama_index import SimpleDirectoryReader, GPTVectorStoreIndex #from langchain import OpenAI import os import shutil os.environ['OPENAI_API_KEY'] = "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" def ingest(docs_dir): documents = SimpleDirectoryReader(docs_dir).load_data() index = GPTVectorStoreIndex.from_documents(documents) return index def query(index, query_text): query_engine = index.as_query_engine() response = query_engine.query(query_text) return response def get_answer(index, message): response = query(index, message) return [('Chatbot', ''.join(response.response))] if os.environ['OPENAI_API_KEY']: # Initialize chatbot history chatbot = [] index = ingest('temp_docs') # Display message input component message = st.text_input('Enter message') # If message is entered, ingest documents and get chatbot response if message: chatbot.append(('You', message)) chatbot += get_answer(index, message) # Display chat history st.text_area('Chatbot:', value='\n'.join( [f'{x[0]}: {x[1]}' for x in chatbot]), height=250)