import streamlit as st from transformers import pipeline, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM, AutoTokenizer class CombinedModel: def __init__(self, classifier_model, classifier_tokenizer, summarizer_model, summarizer_tokenizer): self.classifier_model = classifier_model self.classifier_tokenizer = classifier_tokenizer self.summarizer_model = summarizer_model self.summarizer_tokenizer = summarizer_tokenizer def classify_and_summarize(self, text): classifier = pipeline("text-classification", model=self.classifier_model, tokenizer=self.classifier_tokenizer, return_all_scores=True) summarizer = pipeline("summarization", model=self.summarizer_model, tokenizer=self.summarizer_tokenizer) # Classify the text classification_results = classifier(text)[0] # Determine the label with the highest score max_score = float('-inf') max_label = '' for result in classification_results: if result['score'] > max_score: max_score = result['score'] max_label = result['label'] # Summarize the text summary_results = summarizer(text, max_length=50, min_length=25, do_sample=False) return max_label, max_score, summary_results[0]['summary_text'] @classmethod def from_pretrained(cls, classifier_path, summarizer_path): classifier_model = AutoModelForSequenceClassification.from_pretrained(classifier_path) classifier_tokenizer = AutoTokenizer.from_pretrained(classifier_path) summarizer_model = AutoModelForSeq2SeqLM.from_pretrained(summarizer_path) summarizer_tokenizer = AutoTokenizer.from_pretrained(summarizer_path) return cls(classifier_model, classifier_tokenizer, summarizer_model, summarizer_tokenizer) # Load the combined model classifier_path = "lqqqqqqqqq/FinetunedModelGr9" summarizer_path = "lqqqqqqqqq/SummarizeModelGr9" combined_model = CombinedModel.from_pretrained(classifier_path, summarizer_path) # Streamlit application title st.title("Text Classification and Summarization") st.write("Classification for 3 labels: negative, neutral, positive") # Text input for user to enter the text to classify texts_input = st.text_area("Enter the texts to classify and summarize (one text per line)", "") # Perform text classification and summarization when the user clicks the "Classify" button if st.button("Classify"): texts = texts_input.split('\n') for text in texts: text = text.strip() if text: # Check if text is not empty # Classify and summarize the input text label, score, summary = combined_model.classify_and_summarize(text) # Display the results st.write("Text:", text) st.write("Label:", label) st.write("Score:", score) st.write("Summary:", summary) st.write("---") else: st.write("Please enter some text to classify and summarize.")