import logging logging.getLogger('numba').setLevel(logging.WARNING) import IPython.display as ipd import torch import commons import utils import ONNXVITS_infer from text import text_to_sequence def get_text(text, hps): text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners) if hps.data.add_blank: text_norm = commons.intersperse(text_norm, 0) text_norm = torch.LongTensor(text_norm) return text_norm hps = utils.get_hparams_from_file("../vits/pretrained_models/uma87.json") net_g = ONNXVITS_infer.SynthesizerTrn( len(hps.symbols), hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, **hps.model) _ = net_g.eval() _ = utils.load_checkpoint("../vits/pretrained_models/uma_1153000.pth", net_g) text1 = get_text("おはようございます。", hps) stn_tst = text1 with torch.no_grad(): x_tst = stn_tst.unsqueeze(0) x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) sid = torch.LongTensor([0]) audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy() print(audio)