import models as md import nltk import openai import os nltk.download("punkt") class TextSummarizer: def __init__(self, title): self.title = title self.model = "gpt-3.5-turbo" self.summarizer = md.load_summary_model() openai.api_key = os.getenv("OPENAI_API_KEY") def generate_short_summary(self, summary_chunks:dict) -> list: PROMPT = """ You are a helpful assistant that summarizes youtube videos. Someone has already summarized the video to key points. Summarize the key points in at most two sentences that capture the essence of the passage. """ final_summary = [] for summary_chunk in summary_chunks: response = openai.ChatCompletion.create( model=self.model, messages=[ {"role": "system", "content": PROMPT}, {"role": "user", "content": summary_chunk}, ], ) summary = response["choices"][0]["message"]["content"] final_summary.append(summary) return final_summary def generate_full_summary(self, text_chunks_lib:dict) -> str: sum_dict = dict() for _, key in enumerate(text_chunks_lib): # for key in text_chunks_lib: summary = [] for _, text_chunk in enumerate(text_chunks_lib[key]): chunk_summary = md.summarizer_gen(self.summarizer, sequence=text_chunk, maximum_tokens=500, minimum_tokens=100) summary.append(chunk_summary) # Combine all the summaries into a list and compress into one document, again final_summary = "\n\n".join(list(summary)) sum_dict[key] = [final_summary] return sum_dict[self.title][0]