import torch import cv2 import numpy as np import gradio as gr # load model model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True) # set model parameters model.conf = 0.25 # NMS confidence threshold model.iou = 0.45 # NMS IoU threshold model.agnostic = False # NMS class-agnostic model.multi_label = False # NMS multiple labels per box model.max_det = 1000 # maximum number of detections per image def detect(img): # perform inference results = model(img, size=640) # inference with test time augmentation results = model(img, augment=True) # parse results predictions = results.pred[0] boxes = predictions[:, :4] # x1, y1, x2, y2 scores = predictions[:, 4] categories = predictions[:, 5] return results.show() # show detection bounding boxes on image img = gr.inputs.Image(shape=(192, 192)) intf = gr.Interface(fn=detect, inputs=img, outputs='image') intf.launch(inline=False)