import torch import cv2 import numpy as np import gradio as gr from PIL import Image model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True) model.conf = 0.25 model.iou = 0.45 model.agnostic = False model.multi_label = False model.max_det = 1000 def detect(img): results = model(img, size=640) predictions = results.pred[0] boxes = predictions[:, :4] # x1, y1, x2, y2 scores = predictions[:, 4] categories = predictions[:, 5] new_image = np.squeeze(results.render()) # resize image new_image = cv2.resize(new_image, dim, interpolation = cv2.INTER_AREA) return new_image css = ".output-image, .input-image, .image-preview {height: 600px !important}" iface = gr.Interface(fn=detect, inputs=gr.inputs.Image(type="numpy",), outputs=gr.outputs.Image(type="numpy",), css=css, enable_queue=True) iface.launch(debug=True, cache_examples=True)