import gc import matplotlib.pyplot as plt import numpy as np import torch import torch.nn.functional as F from models import torch_device from transformers import SamModel, SamProcessor import utils import cv2 from scipy import ndimage def load_sam(): sam_model = SamModel.from_pretrained("facebook/sam-vit-base").to(torch_device) sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-base") sam_model_dict = dict( sam_model = sam_model, sam_processor = sam_processor ) return sam_model_dict # Not fully backward compatible with the previous implementation # Reference: lmdv2/notebooks/gen_masked_latents_multi_object_ref_ca_loss_modular.ipynb def sam(sam_model_dict, image, input_points=None, input_boxes=None, target_mask_shape=None, return_numpy=True): """target_mask_shape: (h, w)""" sam_model, sam_processor = sam_model_dict['sam_model'], sam_model_dict['sam_processor'] if input_boxes and isinstance(input_boxes[0], tuple): # Convert tuple to list input_boxes = [list(input_box) for input_box in input_boxes] if input_boxes and input_boxes[0] and isinstance(input_boxes[0][0], tuple): # Convert tuple to list input_boxes = [[list(input_box) for input_box in input_boxes_item] for input_boxes_item in input_boxes] with torch.no_grad(): with torch.autocast(torch_device): inputs = sam_processor(image, input_points=input_points, input_boxes=input_boxes, return_tensors="pt").to(torch_device) outputs = sam_model(**inputs) masks = sam_processor.image_processor.post_process_masks( outputs.pred_masks.cpu().float(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu() ) conf_scores = outputs.iou_scores.cpu().numpy()[0,0] del inputs, outputs gc.collect() torch.cuda.empty_cache() if return_numpy: masks = [F.interpolate(masks_item.type(torch.float), target_mask_shape, mode='bilinear').type(torch.bool).numpy() for masks_item in masks] else: masks = [F.interpolate(masks_item.type(torch.float), target_mask_shape, mode='bilinear').type(torch.bool) for masks_item in masks] return masks, conf_scores def sam_point_input(sam_model_dict, image, input_points, **kwargs): return sam(sam_model_dict, image, input_points=input_points, **kwargs) def sam_box_input(sam_model_dict, image, input_boxes, **kwargs): return sam(sam_model_dict, image, input_boxes=input_boxes, **kwargs) def get_iou_with_resize(mask, masks, masks_shape): masks = np.array([cv2.resize(mask.astype(np.uint8) * 255, masks_shape[::-1], cv2.INTER_LINEAR).astype(bool) for mask in masks]) return utils.iou(mask, masks) def select_mask(masks, conf_scores, coarse_ious=None, rule="largest_over_conf", discourage_mask_below_confidence=0.85, discourage_mask_below_coarse_iou=0.2, verbose=False): """masks: numpy bool array""" mask_sizes = masks.sum(axis=(1, 2)) # Another possible rule: iou with the attention mask if rule == "largest_over_conf": # Use the largest segmentation # Discourage selecting masks with conf too low or coarse iou is too low max_mask_size = np.max(mask_sizes) if coarse_ious is not None: scores = mask_sizes - (conf_scores < discourage_mask_below_confidence) * max_mask_size - (coarse_ious < discourage_mask_below_coarse_iou) * max_mask_size else: scores = mask_sizes - (conf_scores < discourage_mask_below_confidence) * max_mask_size if verbose: print(f"mask_sizes: {mask_sizes}, scores: {scores}") else: raise ValueError(f"Unknown rule: {rule}") mask_id = np.argmax(scores) mask = masks[mask_id] selection_conf = conf_scores[mask_id] if coarse_ious is not None: selection_coarse_iou = coarse_ious[mask_id] else: selection_coarse_iou = None if verbose: # print(f"Confidences: {conf_scores}") print(f"Selected a mask with confidence: {selection_conf}, coarse_iou: {selection_coarse_iou}") if verbose: plt.figure(figsize=(10, 8)) # plt.suptitle("After SAM") for ind in range(3): plt.subplot(1, 3, ind+1) # This is obtained before resize. plt.title(f"Mask {ind}, score {scores[ind]}, conf {conf_scores[ind]:.2f}, iou {coarse_ious[ind] if coarse_ious is not None else None:.2f}") plt.imshow(masks[ind]) plt.tight_layout() plt.show() plt.close() return mask, selection_conf def preprocess_mask(token_attn_np_smooth, mask_th, n_erode_dilate_mask=0): token_attn_np_smooth_normalized = token_attn_np_smooth - token_attn_np_smooth.min() token_attn_np_smooth_normalized /= token_attn_np_smooth_normalized.max() mask_thresholded = token_attn_np_smooth_normalized > mask_th if n_erode_dilate_mask: mask_thresholded = ndimage.binary_erosion(mask_thresholded, iterations=n_erode_dilate_mask) mask_thresholded = ndimage.binary_dilation(mask_thresholded, iterations=n_erode_dilate_mask) return mask_thresholded # The overall pipeline to refine the attention mask def sam_refine_attn(sam_input_image, token_attn_np, model_dict, height, width, H, W, use_box_input, gaussian_sigma, mask_th_for_box, n_erode_dilate_mask_for_box, mask_th_for_point, discourage_mask_below_confidence, discourage_mask_below_coarse_iou, verbose): # token_attn_np is for visualizations token_attn_np_smooth = ndimage.gaussian_filter(token_attn_np, sigma=gaussian_sigma) # (w, h) mask_size_scale = height // token_attn_np_smooth.shape[1], width // token_attn_np_smooth.shape[0] if use_box_input: # box input mask_binary = preprocess_mask(token_attn_np_smooth, mask_th_for_box, n_erode_dilate_mask=n_erode_dilate_mask_for_box) input_boxes = utils.binary_mask_to_box(mask_binary, w_scale=mask_size_scale[0], h_scale=mask_size_scale[1]) input_boxes = [input_boxes] masks, conf_scores = sam_box_input(model_dict, image=sam_input_image, input_boxes=input_boxes, target_mask_shape=(H, W)) else: # point input mask_binary = preprocess_mask(token_attn_np_smooth, mask_th_for_point, n_erode_dilate_mask=0) # Uses the max coordinate only max_coord = np.unravel_index(token_attn_np_smooth.argmax(), token_attn_np_smooth.shape) # print("max_coord:", max_coord) input_points = [[[max_coord[1] * mask_size_scale[1], max_coord[0] * mask_size_scale[0]]]] masks, conf_scores = sam_point_input(model_dict, image=sam_input_image, input_points=input_points, target_mask_shape=(H, W)) if verbose: plt.title("Coarse binary mask (for box for box input and for iou)") plt.imshow(mask_binary) plt.show() coarse_ious = get_iou_with_resize(mask_binary, masks, masks_shape=mask_binary.shape) mask_selected, conf_score_selected = select_mask(masks, conf_scores, coarse_ious=coarse_ious, rule="largest_over_conf", discourage_mask_below_confidence=discourage_mask_below_confidence, discourage_mask_below_coarse_iou=discourage_mask_below_coarse_iou, verbose=True) return mask_selected, conf_score_selected def sam_refine_box(sam_input_image, box, *args, **kwargs): # One image with one box sam_input_images, boxes = [sam_input_image], [[box]] mask_selected_batched_list, conf_score_selected_batched_list = sam_refine_boxes(sam_input_images, boxes, *args, **kwargs) return mask_selected_batched_list[0][0], conf_score_selected_batched_list[0][0] def sam_refine_boxes(sam_input_images, boxes, model_dict, height, width, H, W, discourage_mask_below_confidence, discourage_mask_below_coarse_iou, verbose): # (w, h) input_boxes = [[utils.scale_proportion(box, H=height, W=width) for box in boxes_item] for boxes_item in boxes] masks, conf_scores = sam_box_input(model_dict, image=sam_input_images, input_boxes=input_boxes, target_mask_shape=(H, W)) mask_selected_batched_list, conf_score_selected_batched_list = [], [] for boxes_item, masks_item in zip(boxes, masks): mask_selected_list, conf_score_selected_list = [], [] for box, three_masks in zip(boxes_item, masks_item): mask_binary = utils.proportion_to_mask(box, H, W, return_np=True) if verbose: # Also the box is the input for SAM plt.title("Binary mask from input box (for iou)") plt.imshow(mask_binary) plt.show() coarse_ious = get_iou_with_resize(mask_binary, three_masks, masks_shape=mask_binary.shape) mask_selected, conf_score_selected = select_mask(three_masks, conf_scores, coarse_ious=coarse_ious, rule="largest_over_conf", discourage_mask_below_confidence=discourage_mask_below_confidence, discourage_mask_below_coarse_iou=discourage_mask_below_coarse_iou, verbose=True) mask_selected_list.append(mask_selected) conf_score_selected_list.append(conf_score_selected) mask_selected_batched_list.append(mask_selected_list) conf_score_selected_batched_list.append(conf_score_selected_list) return mask_selected_batched_list, conf_score_selected_batched_list