from dataclasses import dataclass import glob import json from typing import Dict, List, Tuple from src.utils_display import AutoEvalColumn, make_clickable_model import numpy as np # clone / pull the lmeh eval data METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"] BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"] BENCH_TO_NAME = { "arc_challenge": AutoEvalColumn.arc.name, "hellaswag": AutoEvalColumn.hellaswag.name, "hendrycks": AutoEvalColumn.mmlu.name, "truthfulqa_mc": AutoEvalColumn.truthfulqa.name, } @dataclass class EvalResult: eval_name: str org: str model: str revision: str is_8bit: bool results: dict def to_dict(self): if self.org is not None: base_model = f"{self.org}/{self.model}" else: base_model = f"{self.model}" data_dict = {} data_dict["eval_name"] = self.eval_name # not a column, just a save name data_dict[AutoEvalColumn.is_8bit.name] = self.is_8bit data_dict[AutoEvalColumn.model.name] = make_clickable_model(base_model) data_dict[AutoEvalColumn.dummy.name] = base_model data_dict[AutoEvalColumn.revision.name] = self.revision data_dict[AutoEvalColumn.average.name] = round( sum([v for k, v in self.results.items()]) / 4.0, 1 ) for benchmark in BENCHMARKS: if not benchmark in self.results.keys(): self.results[benchmark] = None for k, v in BENCH_TO_NAME.items(): data_dict[v] = self.results[k] return data_dict def parse_eval_result(json_filepath: str) -> Tuple[str, dict]: with open(json_filepath) as fp: data = json.load(fp) path_split = json_filepath.split("/") org = None model = path_split[-4] is_8bit = path_split[-2] == "8bit" revision = path_split[-3] if len(path_split) == 7: # handles gpt2 type models that don't have an org result_key = f"{model}_{revision}_{is_8bit}" else: org = path_split[-5] result_key = f"{org}_{model}_{revision}_{is_8bit}" eval_result = None for benchmark, metric in zip(BENCHMARKS, METRICS): if benchmark in json_filepath: accs = np.array([v[metric] for v in data["results"].values()]) mean_acc = round(np.mean(accs) * 100.0, 1) eval_result = EvalResult( result_key, org, model, revision, is_8bit, {benchmark: mean_acc} ) return result_key, eval_result def get_eval_results(is_public) -> List[EvalResult]: json_filepaths = glob.glob( "auto_evals/eval_results/public/**/16bit/*.json", recursive=True ) if not is_public: json_filepaths += glob.glob( "auto_evals/eval_results/private/**/*.json", recursive=True ) json_filepaths += glob.glob( "auto_evals/eval_results/private/**/*.json", recursive=True ) # include the 8bit evals of public models json_filepaths += glob.glob( "auto_evals/eval_results/public/**/8bit/*.json", recursive=True ) eval_results = {} for json_filepath in json_filepaths: result_key, eval_result = parse_eval_result(json_filepath) if result_key in eval_results.keys(): eval_results[result_key].results.update(eval_result.results) else: eval_results[result_key] = eval_result eval_results = [v for v in eval_results.values()] return eval_results def get_eval_results_dicts(is_public=True) -> List[Dict]: eval_results = get_eval_results(is_public) return [e.to_dict() for e in eval_results]