""" https://github.com/Trinkle23897/Fast-Poisson-Image-Editing MIT License Copyright (c) 2022 Jiayi Weng Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import os from abc import ABC, abstractmethod from typing import Any, Optional, Tuple import numpy as np from fpie import np_solver import scipy import scipy.signal CPU_COUNT = os.cpu_count() or 1 DEFAULT_BACKEND = "numpy" ALL_BACKEND = ["numpy"] try: from fpie import numba_solver ALL_BACKEND += ["numba"] DEFAULT_BACKEND = "numba" except ImportError: numba_solver = None # type: ignore try: from fpie import taichi_solver ALL_BACKEND += ["taichi-cpu", "taichi-gpu"] DEFAULT_BACKEND = "taichi-cpu" except ImportError: taichi_solver = None # type: ignore # try: # from fpie import core_gcc # type: ignore # DEFAULT_BACKEND = "gcc" # ALL_BACKEND.append("gcc") # except ImportError: # core_gcc = None # try: # from fpie import core_openmp # type: ignore # DEFAULT_BACKEND = "openmp" # ALL_BACKEND.append("openmp") # except ImportError: # core_openmp = None # try: # from mpi4py import MPI # from fpie import core_mpi # type: ignore # ALL_BACKEND.append("mpi") # except ImportError: # MPI = None # type: ignore # core_mpi = None try: from fpie import core_cuda # type: ignore DEFAULT_BACKEND = "cuda" ALL_BACKEND.append("cuda") except ImportError: core_cuda = None class BaseProcessor(ABC): """API definition for processor class.""" def __init__( self, gradient: str, rank: int, backend: str, core: Optional[Any] ): if core is None: error_msg = { "numpy": "Please run `pip install numpy`.", "numba": "Please run `pip install numba`.", "gcc": "Please install cmake and gcc in your operating system.", "openmp": "Please make sure your gcc is compatible with `-fopenmp` option.", "mpi": "Please install MPI and run `pip install mpi4py`.", "cuda": "Please make sure nvcc and cuda-related libraries are available.", "taichi": "Please run `pip install taichi`.", } print(error_msg[backend.split("-")[0]]) raise AssertionError(f"Invalid backend {backend}.") self.gradient = gradient self.rank = rank self.backend = backend self.core = core self.root = rank == 0 def mixgrad(self, a: np.ndarray, b: np.ndarray) -> np.ndarray: if self.gradient == "src": return a if self.gradient == "avg": return (a + b) / 2 # mix gradient, see Equ. 12 in PIE paper mask = np.abs(a) < np.abs(b) a[mask] = b[mask] return a @abstractmethod def reset( self, src: np.ndarray, mask: np.ndarray, tgt: np.ndarray, mask_on_src: Tuple[int, int], mask_on_tgt: Tuple[int, int], ) -> int: pass def sync(self) -> None: self.core.sync() @abstractmethod def step(self, iteration: int) -> Optional[Tuple[np.ndarray, np.ndarray]]: pass class EquProcessor(BaseProcessor): """PIE Jacobi equation processor.""" def __init__( self, gradient: str = "max", backend: str = DEFAULT_BACKEND, n_cpu: int = CPU_COUNT, min_interval: int = 100, block_size: int = 1024, ): core: Optional[Any] = None rank = 0 if backend == "numpy": core = np_solver.EquSolver() elif backend == "numba" and numba_solver is not None: core = numba_solver.EquSolver() elif backend == "gcc": core = core_gcc.EquSolver() elif backend == "openmp" and core_openmp is not None: core = core_openmp.EquSolver(n_cpu) elif backend == "mpi" and core_mpi is not None: core = core_mpi.EquSolver(min_interval) rank = MPI.COMM_WORLD.Get_rank() elif backend == "cuda" and core_cuda is not None: core = core_cuda.EquSolver(block_size) elif backend.startswith("taichi") and taichi_solver is not None: core = taichi_solver.EquSolver(backend, n_cpu, block_size) super().__init__(gradient, rank, backend, core) def mask2index( self, mask: np.ndarray ) -> Tuple[np.ndarray, int, np.ndarray, np.ndarray]: x, y = np.nonzero(mask) max_id = x.shape[0] + 1 index = np.zeros((max_id, 3)) ids = self.core.partition(mask) ids[mask == 0] = 0 # reserve id=0 for constant index = ids[x, y].argsort() return ids, max_id, x[index], y[index] def reset( self, src: np.ndarray, mask: np.ndarray, tgt: np.ndarray, mask_on_src: Tuple[int, int], mask_on_tgt: Tuple[int, int], ) -> int: assert self.root # check validity # assert 0 <= mask_on_src[0] and 0 <= mask_on_src[1] # assert mask_on_src[0] + mask.shape[0] <= src.shape[0] # assert mask_on_src[1] + mask.shape[1] <= src.shape[1] # assert mask_on_tgt[0] + mask.shape[0] <= tgt.shape[0] # assert mask_on_tgt[1] + mask.shape[1] <= tgt.shape[1] if len(mask.shape) == 3: mask = mask.mean(-1) mask = (mask >= 128).astype(np.int32) # zero-out edge mask[0] = 0 mask[-1] = 0 mask[:, 0] = 0 mask[:, -1] = 0 x, y = np.nonzero(mask) x0, x1 = x.min() - 1, x.max() + 2 y0, y1 = y.min() - 1, y.max() + 2 mask_on_src = (x0 + mask_on_src[0], y0 + mask_on_src[1]) mask_on_tgt = (x0 + mask_on_tgt[0], y0 + mask_on_tgt[1]) mask = mask[x0:x1, y0:y1] ids, max_id, index_x, index_y = self.mask2index(mask) src_x, src_y = index_x + mask_on_src[0], index_y + mask_on_src[1] tgt_x, tgt_y = index_x + mask_on_tgt[0], index_y + mask_on_tgt[1] src_C = src[src_x, src_y].astype(np.float32) src_U = src[src_x - 1, src_y].astype(np.float32) src_D = src[src_x + 1, src_y].astype(np.float32) src_L = src[src_x, src_y - 1].astype(np.float32) src_R = src[src_x, src_y + 1].astype(np.float32) tgt_C = tgt[tgt_x, tgt_y].astype(np.float32) tgt_U = tgt[tgt_x - 1, tgt_y].astype(np.float32) tgt_D = tgt[tgt_x + 1, tgt_y].astype(np.float32) tgt_L = tgt[tgt_x, tgt_y - 1].astype(np.float32) tgt_R = tgt[tgt_x, tgt_y + 1].astype(np.float32) grad = self.mixgrad(src_C - src_L, tgt_C - tgt_L) \ + self.mixgrad(src_C - src_R, tgt_C - tgt_R) \ + self.mixgrad(src_C - src_U, tgt_C - tgt_U) \ + self.mixgrad(src_C - src_D, tgt_C - tgt_D) A = np.zeros((max_id, 4), np.int32) X = np.zeros((max_id, 3), np.float32) B = np.zeros((max_id, 3), np.float32) X[1:] = tgt[index_x + mask_on_tgt[0], index_y + mask_on_tgt[1]] # four-way A[1:, 0] = ids[index_x - 1, index_y] A[1:, 1] = ids[index_x + 1, index_y] A[1:, 2] = ids[index_x, index_y - 1] A[1:, 3] = ids[index_x, index_y + 1] B[1:] = grad m = (mask[index_x - 1, index_y] == 0).astype(float).reshape(-1, 1) B[1:] += m * tgt[index_x + mask_on_tgt[0] - 1, index_y + mask_on_tgt[1]] m = (mask[index_x, index_y - 1] == 0).astype(float).reshape(-1, 1) B[1:] += m * tgt[index_x + mask_on_tgt[0], index_y + mask_on_tgt[1] - 1] m = (mask[index_x, index_y + 1] == 0).astype(float).reshape(-1, 1) B[1:] += m * tgt[index_x + mask_on_tgt[0], index_y + mask_on_tgt[1] + 1] m = (mask[index_x + 1, index_y] == 0).astype(float).reshape(-1, 1) B[1:] += m * tgt[index_x + mask_on_tgt[0] + 1, index_y + mask_on_tgt[1]] self.tgt = tgt.copy() self.tgt_index = (index_x + mask_on_tgt[0], index_y + mask_on_tgt[1]) self.core.reset(max_id, A, X, B) return max_id def step(self, iteration: int) -> Optional[Tuple[np.ndarray, np.ndarray]]: result = self.core.step(iteration) if self.root: x, err = result self.tgt[self.tgt_index] = x[1:] return self.tgt, err return None class GridProcessor(BaseProcessor): """PIE grid processor.""" def __init__( self, gradient: str = "max", backend: str = DEFAULT_BACKEND, n_cpu: int = CPU_COUNT, min_interval: int = 100, block_size: int = 1024, grid_x: int = 8, grid_y: int = 8, ): core: Optional[Any] = None rank = 0 if backend == "numpy": core = np_solver.GridSolver() elif backend == "numba" and numba_solver is not None: core = numba_solver.GridSolver() elif backend == "gcc": core = core_gcc.GridSolver(grid_x, grid_y) elif backend == "openmp" and core_openmp is not None: core = core_openmp.GridSolver(grid_x, grid_y, n_cpu) elif backend == "mpi" and core_mpi is not None: core = core_mpi.GridSolver(min_interval) rank = MPI.COMM_WORLD.Get_rank() elif backend == "cuda" and core_cuda is not None: core = core_cuda.GridSolver(grid_x, grid_y) elif backend.startswith("taichi") and taichi_solver is not None: core = taichi_solver.GridSolver( grid_x, grid_y, backend, n_cpu, block_size ) super().__init__(gradient, rank, backend, core) def reset( self, src: np.ndarray, mask: np.ndarray, tgt: np.ndarray, mask_on_src: Tuple[int, int], mask_on_tgt: Tuple[int, int], ) -> int: assert self.root # check validity # assert 0 <= mask_on_src[0] and 0 <= mask_on_src[1] # assert mask_on_src[0] + mask.shape[0] <= src.shape[0] # assert mask_on_src[1] + mask.shape[1] <= src.shape[1] # assert mask_on_tgt[0] + mask.shape[0] <= tgt.shape[0] # assert mask_on_tgt[1] + mask.shape[1] <= tgt.shape[1] if len(mask.shape) == 3: mask = mask.mean(-1) mask = (mask >= 128).astype(np.int32) # zero-out edge mask[0] = 0 mask[-1] = 0 mask[:, 0] = 0 mask[:, -1] = 0 x, y = np.nonzero(mask) x0, x1 = x.min() - 1, x.max() + 2 y0, y1 = y.min() - 1, y.max() + 2 mask = mask[x0:x1, y0:y1] max_id = np.prod(mask.shape) src_crop = src[mask_on_src[0] + x0:mask_on_src[0] + x1, mask_on_src[1] + y0:mask_on_src[1] + y1].astype(np.float32) tgt_crop = tgt[mask_on_tgt[0] + x0:mask_on_tgt[0] + x1, mask_on_tgt[1] + y0:mask_on_tgt[1] + y1].astype(np.float32) grad = np.zeros([*mask.shape, 3], np.float32) grad[1:] += self.mixgrad( src_crop[1:] - src_crop[:-1], tgt_crop[1:] - tgt_crop[:-1] ) grad[:-1] += self.mixgrad( src_crop[:-1] - src_crop[1:], tgt_crop[:-1] - tgt_crop[1:] ) grad[:, 1:] += self.mixgrad( src_crop[:, 1:] - src_crop[:, :-1], tgt_crop[:, 1:] - tgt_crop[:, :-1] ) grad[:, :-1] += self.mixgrad( src_crop[:, :-1] - src_crop[:, 1:], tgt_crop[:, :-1] - tgt_crop[:, 1:] ) grad[mask == 0] = 0 if True: kernel = [[1] * 3 for _ in range(3)] nmask = mask.copy() nmask[nmask > 0] = 1 res = scipy.signal.convolve2d( nmask, kernel, mode="same", boundary="fill", fillvalue=1 ) res[nmask < 1] = 0 res[res == 9] = 0 res[res > 0] = 1 grad[res>0]=0 # ylst, xlst = res.nonzero() # for y, x in zip(ylst, xlst): # grad[y,x]=0 # for yi in range(-1,2): # for xi in range(-1,2): # grad[y+yi,x+xi]=0 self.x0 = mask_on_tgt[0] + x0 self.x1 = mask_on_tgt[0] + x1 self.y0 = mask_on_tgt[1] + y0 self.y1 = mask_on_tgt[1] + y1 self.tgt = tgt.copy() self.core.reset(max_id, mask, tgt_crop, grad) return max_id def step(self, iteration: int) -> Optional[Tuple[np.ndarray, np.ndarray]]: result = self.core.step(iteration) if self.root: tgt, err = result self.tgt[self.x0:self.x1, self.y0:self.y1] = tgt return self.tgt, err return None