#include #include #include #include #include #include "inpaint.h" namespace { static std::vector kDistance2Similarity; void init_kDistance2Similarity() { double base[11] = {1.0, 0.99, 0.96, 0.83, 0.38, 0.11, 0.02, 0.005, 0.0006, 0.0001, 0}; int length = (PatchDistanceMetric::kDistanceScale + 1); kDistance2Similarity.resize(length); for (int i = 0; i < length; ++i) { double t = (double) i / length; int j = (int) (100 * t); int k = j + 1; double vj = (j < 11) ? base[j] : 0; double vk = (k < 11) ? base[k] : 0; kDistance2Similarity[i] = vj + (100 * t - j) * (vk - vj); } } inline void _weighted_copy(const MaskedImage &source, int ys, int xs, cv::Mat &target, int yt, int xt, double weight) { if (source.is_masked(ys, xs)) return; if (source.is_globally_masked(ys, xs)) return; auto source_ptr = source.get_image(ys, xs); auto target_ptr = target.ptr(yt, xt); #pragma unroll for (int c = 0; c < 3; ++c) target_ptr[c] += static_cast(source_ptr[c]) * weight; target_ptr[3] += weight; } } /** * This algorithme uses a version proposed by Xavier Philippeau. */ Inpainting::Inpainting(cv::Mat image, cv::Mat mask, const PatchDistanceMetric *metric) : m_initial(image, mask), m_distance_metric(metric), m_pyramid(), m_source2target(), m_target2source() { _initialize_pyramid(); } Inpainting::Inpainting(cv::Mat image, cv::Mat mask, cv::Mat global_mask, const PatchDistanceMetric *metric) : m_initial(image, mask, global_mask), m_distance_metric(metric), m_pyramid(), m_source2target(), m_target2source() { _initialize_pyramid(); } void Inpainting::_initialize_pyramid() { auto source = m_initial; m_pyramid.push_back(source); while (source.size().height > m_distance_metric->patch_size() && source.size().width > m_distance_metric->patch_size()) { source = source.downsample(); m_pyramid.push_back(source); } if (kDistance2Similarity.size() == 0) { init_kDistance2Similarity(); } } cv::Mat Inpainting::run(bool verbose, bool verbose_visualize, unsigned int random_seed) { srand(random_seed); const int nr_levels = m_pyramid.size(); MaskedImage source, target; for (int level = nr_levels - 1; level >= 0; --level) { if (verbose) std::cerr << "Inpainting level: " << level << std::endl; source = m_pyramid[level]; if (level == nr_levels - 1) { target = source.clone(); target.clear_mask(); m_source2target = NearestNeighborField(source, target, m_distance_metric); m_target2source = NearestNeighborField(target, source, m_distance_metric); } else { m_source2target = NearestNeighborField(source, target, m_distance_metric, m_source2target); m_target2source = NearestNeighborField(target, source, m_distance_metric, m_target2source); } if (verbose) std::cerr << "Initialization done." << std::endl; if (verbose_visualize) { auto visualize_size = m_initial.size(); cv::Mat source_visualize(visualize_size, m_initial.image().type()); cv::resize(source.image(), source_visualize, visualize_size); cv::imshow("Source", source_visualize); cv::Mat target_visualize(visualize_size, m_initial.image().type()); cv::resize(target.image(), target_visualize, visualize_size); cv::imshow("Target", target_visualize); cv::waitKey(0); } target = _expectation_maximization(source, target, level, verbose); } return target.image(); } // EM-Like algorithm (see "PatchMatch" - page 6). // Returns a double sized target image (unless level = 0). MaskedImage Inpainting::_expectation_maximization(MaskedImage source, MaskedImage target, int level, bool verbose) { const int nr_iters_em = 1 + 2 * level; const int nr_iters_nnf = static_cast(std::min(7, 1 + level)); const int patch_size = m_distance_metric->patch_size(); MaskedImage new_source, new_target; for (int iter_em = 0; iter_em < nr_iters_em; ++iter_em) { if (iter_em != 0) { m_source2target.set_target(new_target); m_target2source.set_source(new_target); target = new_target; } if (verbose) std::cerr << "EM Iteration: " << iter_em << std::endl; auto size = source.size(); for (int i = 0; i < size.height; ++i) { for (int j = 0; j < size.width; ++j) { if (!source.contains_mask(i, j, patch_size)) { m_source2target.set_identity(i, j); m_target2source.set_identity(i, j); } } } if (verbose) std::cerr << " NNF minimization started." << std::endl; m_source2target.minimize(nr_iters_nnf); m_target2source.minimize(nr_iters_nnf); if (verbose) std::cerr << " NNF minimization finished." << std::endl; // Instead of upsizing the final target, we build the last target from the next level source image. // Thus, the final target is less blurry (see "Space-Time Video Completion" - page 5). bool upscaled = false; if (level >= 1 && iter_em == nr_iters_em - 1) { new_source = m_pyramid[level - 1]; new_target = target.upsample(new_source.size().width, new_source.size().height, m_pyramid[level - 1].global_mask()); upscaled = true; } else { new_source = m_pyramid[level]; new_target = target.clone(); } auto vote = cv::Mat(new_target.size(), CV_64FC4); vote.setTo(cv::Scalar::all(0)); // Votes for best patch from NNF Source->Target (completeness) and Target->Source (coherence). _expectation_step(m_source2target, 1, vote, new_source, upscaled); if (verbose) std::cerr << " Expectation source to target finished." << std::endl; _expectation_step(m_target2source, 0, vote, new_source, upscaled); if (verbose) std::cerr << " Expectation target to source finished." << std::endl; // Compile votes and update pixel values. _maximization_step(new_target, vote); if (verbose) std::cerr << " Minimization step finished." << std::endl; } return new_target; } // Expectation step: vote for best estimations of each pixel. void Inpainting::_expectation_step( const NearestNeighborField &nnf, bool source2target, cv::Mat &vote, const MaskedImage &source, bool upscaled ) { auto source_size = nnf.source_size(); auto target_size = nnf.target_size(); const int patch_size = m_distance_metric->patch_size(); for (int i = 0; i < source_size.height; ++i) { for (int j = 0; j < source_size.width; ++j) { if (nnf.source().is_globally_masked(i, j)) continue; int yp = nnf.at(i, j, 0), xp = nnf.at(i, j, 1), dp = nnf.at(i, j, 2); double w = kDistance2Similarity[dp]; for (int di = -patch_size; di <= patch_size; ++di) { for (int dj = -patch_size; dj <= patch_size; ++dj) { int ys = i + di, xs = j + dj, yt = yp + di, xt = xp + dj; if (!(ys >= 0 && ys < source_size.height && xs >= 0 && xs < source_size.width)) continue; if (nnf.source().is_globally_masked(ys, xs)) continue; if (!(yt >= 0 && yt < target_size.height && xt >= 0 && xt < target_size.width)) continue; if (nnf.target().is_globally_masked(yt, xt)) continue; if (!source2target) { std::swap(ys, yt); std::swap(xs, xt); } if (upscaled) { for (int uy = 0; uy < 2; ++uy) { for (int ux = 0; ux < 2; ++ux) { _weighted_copy(source, 2 * ys + uy, 2 * xs + ux, vote, 2 * yt + uy, 2 * xt + ux, w); } } } else { _weighted_copy(source, ys, xs, vote, yt, xt, w); } } } } } } // Maximization Step: maximum likelihood of target pixel. void Inpainting::_maximization_step(MaskedImage &target, const cv::Mat &vote) { auto target_size = target.size(); for (int i = 0; i < target_size.height; ++i) { for (int j = 0; j < target_size.width; ++j) { const double *source_ptr = vote.ptr(i, j); unsigned char *target_ptr = target.get_mutable_image(i, j); if (target.is_globally_masked(i, j)) { continue; } if (source_ptr[3] > 0) { unsigned char r = cv::saturate_cast(source_ptr[0] / source_ptr[3]); unsigned char g = cv::saturate_cast(source_ptr[1] / source_ptr[3]); unsigned char b = cv::saturate_cast(source_ptr[2] / source_ptr[3]); target_ptr[0] = r, target_ptr[1] = g, target_ptr[2] = b; } else { target.set_mask(i, j, 0); } } } }