import gradio as gr import sys import os from datasets import load_dataset from typing import List MAX_BASE_LLM_NUM = 20 MIN_BASE_LLM_NUM = 3 DESCRIPTIONS = """\ LLM-Blender is an innovative ensembling framework to attain consistently superior performance by leveraging the diverse strengths of multiple open-source large language models (LLMs). LLM-Blender cut the weaknesses through ranking and integrate the strengths through fusing generation to enhance the capability of LLMs. """ EXAMPLES_DATASET = load_dataset("llm-blender/mix-instruct", split='validation', streaming=True) SHUFFLED_EXAMPLES_DATASET = EXAMPLES_DATASET.shuffle(seed=42, buffer_size=1000) EXAMPLES = [] CANDIDATE_EXAMPLES = {} for example in SHUFFLED_EXAMPLES_DATASET.take(100): EXAMPLES.append([ example['instruction'], example['input'], ]) CANDIDATE_EXAMPLES[example['instruction']+example['input']] = example['candidates'] # Download ranker checkpoint print("Downloading pairranker-deberta-v3-large.zip") os.system("gdown https://drive.google.com/uc?id=1EpvFu_qYY0MaIu0BAAhK-sYKHVWtccWg") print("Downloaded pairranker-deberta-v3-large.zip") print("Unzipping pairranker-deberta-v3-large.zip") os.system("unzip pairranker-deberta-v3-large.zip") print("Unzipped pairranker-deberta-v3-large.zip") os.system("ls -l") # Load Blender import llm_blender from llm_blender.blender.blender_utils import get_topk_candidates_from_ranks ranker_config = llm_blender.RankerConfig() ranker_config.ranker_type = "pairranker" ranker_config.model_type = "deberta" ranker_config.model_name = "microsoft/deberta-v3-large" # ranker backbone ranker_config.load_checkpoint = "./pairranker-deberta-v3-large" # ranker checkpoint ranker_config.source_maxlength = 128 ranker_config.candidate_maxlength = 128 ranker_config.n_tasks = 1 # number of singal that has been used to train the ranker. This checkpoint is trained using BARTScore only, thus being 1. fuser_config = llm_blender.GenFuserConfig() fuser_config.model_name = "llm-blender/gen_fuser_3b" # our pre-trained fuser fuser_config.max_length = 1024 fuser_config.candidate_maxlength = 128 blender_config = llm_blender.BlenderConfig() blender_config.device = "cpu" # blender ranker and fuser device blender = llm_blender.Blender(blender_config, ranker_config, fuser_config) def update_base_llms_num(k, llm_outputs): k = int(k) return [gr.Dropdown.update(choices=[f"LLM-{i+1}" for i in range(k)], value=f"LLM-1" if k >= 1 else "", visible=True), {f"LLM-{i+1}": llm_outputs.get(f"LLM-{i+1}", "") for i in range(k)}] def display_llm_output(llm_outputs, selected_base_llm_name): return gr.Textbox.update(value=llm_outputs.get(selected_base_llm_name, ""), label=selected_base_llm_name + " (Click Save to save current content)", placeholder=f"Enter {selected_base_llm_name} output here", show_label=True) def save_llm_output(selected_base_llm_name, selected_base_llm_output, llm_outputs): llm_outputs.update({selected_base_llm_name: selected_base_llm_output}) return llm_outputs def get_preprocess_examples(inst, input): # get the num_of_base_llms candidates = CANDIDATE_EXAMPLES[inst+input] num_candiates = len(candidates) dummy_text = inst+input return inst, input, num_candiates, dummy_text def update_base_llm_dropdown_along_examples(dummy_text): candidates = CANDIDATE_EXAMPLES[dummy_text] ex_llm_outputs = {f"LLM-{i+1}": candidates[i]['text'] for i in range(len(candidates))} return ex_llm_outputs def check_save_ranker_inputs(inst, input, llm_outputs): if not inst and not input: raise gr.Error("Please enter instruction or input context") if not all([x for x in llm_outputs.values()]): empty_llm_names = [llm_name for llm_name, llm_output in llm_outputs.items() if not llm_output] raise gr.Error("Please enter base LLM outputs for LLMs: {}").format(empty_llm_names) return { "inst": inst, "input": input, "candidates": list(llm_outputs.values()), } def check_fuser_inputs(blender_state, top_k_for_fuser, ranks): pass def llms_rank(inst, input, llm_outputs): candidates = list(llm_outputs.values()) return blender.rank(instructions=[inst], inputs=[input], candidates=[candidates])[0] def display_ranks(ranks): return ", ".join([f"LLM-{i+1}: {rank}" for i, rank in enumerate(ranks)]) def llms_fuse(blender_state, top_k_for_fuser, ranks): inst = blender_state['inst'] input = blender_state['input'] candidates = blender_state['candidates'] top_k_candidates = get_topk_candidates_from_ranks([ranks], [candidates], top_k=top_k_for_fuser)[0] return blender.fuse(instructions=[inst], inputs=[input], candidates=[top_k_candidates])[0] def display_fuser_output(fuser_output): return fuser_output with gr.Blocks(theme='ParityError/Anime') as demo: gr.Markdown(DESCRIPTIONS) with gr.Row(): with gr.Column(): inst_textbox = gr.Textbox(lines=1, label="Instruction", placeholder="Enter instruction here", show_label=True) input_textbox = gr.Textbox(lines=4, label="Input Context", placeholder="Enter input context here", show_label=True) with gr.Column(): saved_llm_outputs = gr.State(value={}) selected_base_llm_name_dropdown = gr.Dropdown(label="Base LLM", choices=[f"LLM-{i+1}" for i in range(MIN_BASE_LLM_NUM)], value="LLM-1", show_label=True) selected_base_llm_output = gr.Textbox(lines=4, label="LLM-1 (Click Save to save current content)", placeholder="Enter LLM-1 output here", show_label=True) with gr.Row(): base_llm_outputs_save_button = gr.Button('Save', variant='primary') base_llm_outputs_clear_single_button = gr.Button('Clear Single', variant='primary') base_llm_outputs_clear_all_button = gr.Button('Clear All', variant='primary') base_llms_num = gr.Slider( label='Number of base llms', minimum=MIN_BASE_LLM_NUM, maximum=MAX_BASE_LLM_NUM, step=1, value=MIN_BASE_LLM_NUM, ) blender_state = gr.State(value={}) with gr.Tab("Ranking outputs"): saved_rank_outputs = gr.State(value=[]) rank_outputs = gr.Textbox(lines=4, label="Ranking outputs", placeholder="Ranking outputs", show_label=True) with gr.Tab("Fusing outputs"): saved_fuse_outputs = gr.State(value=[]) fuser_outputs = gr.Textbox(lines=4, label="Fusing outputs", placeholder="Fusing outputs", show_label=True) with gr.Row(): rank_button = gr.Button('Rank LLM Outputs', variant='primary', scale=1, min_width=0) fuse_button = gr.Button('Fuse Top-K ranked outputs', variant='primary', scale=1, min_width=0) clear_button = gr.Button('Clear Blender', variant='primary', scale=1, min_width=0) with gr.Accordion(label='Advanced options', open=False): top_k_for_fuser = gr.Slider( label='Top k for fuser', minimum=1, maximum=3, step=1, value=1, ) examples_dummy_textbox = gr.Textbox(lines=1, label="", placeholder="", show_label=False, visible=False) batch_examples = gr.Examples( examples=EXAMPLES, fn=get_preprocess_examples, cache_examples=True, examples_per_page=5, inputs=[inst_textbox, input_textbox], outputs=[inst_textbox, input_textbox, base_llms_num, examples_dummy_textbox], ) base_llms_num.change( fn=update_base_llms_num, inputs=[base_llms_num, saved_llm_outputs], outputs=[selected_base_llm_name_dropdown, saved_llm_outputs], ) examples_dummy_textbox.change( fn=update_base_llm_dropdown_along_examples, inputs=[examples_dummy_textbox], outputs=saved_llm_outputs, ).then( fn=display_llm_output, inputs=[saved_llm_outputs, selected_base_llm_name_dropdown], outputs=selected_base_llm_output, ) selected_base_llm_name_dropdown.change( fn=display_llm_output, inputs=[saved_llm_outputs, selected_base_llm_name_dropdown], outputs=selected_base_llm_output, ) base_llm_outputs_save_button.click( fn=save_llm_output, inputs=[selected_base_llm_name_dropdown, selected_base_llm_output, saved_llm_outputs], outputs=saved_llm_outputs, ) base_llm_outputs_clear_all_button.click( fn=lambda: [{}, ""], inputs=[], outputs=[saved_llm_outputs, selected_base_llm_output], ) base_llm_outputs_clear_single_button.click( fn=lambda: "", inputs=[], outputs=selected_base_llm_output, ) rank_button.click( fn=check_save_ranker_inputs, inputs=[inst_textbox, input_textbox, saved_llm_outputs], outputs=blender_state, ).success( fn=llms_rank, inputs=[inst_textbox, input_textbox, saved_llm_outputs], outputs=[saved_rank_outputs], ).then( fn=display_ranks, inputs=[saved_rank_outputs], outputs=rank_outputs, ) fuse_button.click( fn=check_fuser_inputs, inputs=[blender_state, top_k_for_fuser, saved_rank_outputs], outputs=[], ).success( fn=llms_fuse, inputs=[blender_state, top_k_for_fuser, saved_rank_outputs], outputs=[saved_fuse_outputs], ).then( fn=display_fuser_output, inputs=[saved_fuse_outputs], outputs=fuser_outputs, ) clear_button.click( fn=lambda: ["", "", {}, []], inputs=[], outputs=[rank_outputs, fuser_outputs, blender_state, saved_rank_outputs], ) demo.queue(max_size=20).launch()