import gradio as gr import openai from sentence_transformers import SentenceTransformer from langchain.prompts import PromptTemplate def process(api, caption, category, asr, ocr): openai.api_key = api preference = "兴趣标签" example = "例如,给定一个视频,它的\"标题\"为\"长安系最便宜的轿车,4W起很多人都看不上它,但我知道车只是代步工具,又需要什么面子呢!\"" \ "类别\"为\"汽车\",\"ocr\"为\"长安系最便宜的一款轿车\",\"asr\"为\"我不否认现在的国产和合资还有一定的差距,但确实是他们让" \ "我们5万开了MP V8万开上了轿车,10万开张了ICV15万开张了大七座。\",{}生成机器人推断出合理的\"{}\"为\"长安轿车报价、最便宜的" \ "长安轿车、新款长安轿车\"。".format(preference, preference), prompt = PromptTemplate( input_variables=["preference", "caption", "ocr", "asr", "category", "example"], template="你是一个视频的{preference}生成机器人,根据输入的视频标题、类别、ocr、asr推理出合理的\"{preference}\",以多个多" "于两字的标签形式进行表达,以顿号隔开。{example}那么,给定一个新的视频,它的\"标题\"为\"{caption}\",\"类别\"为" "\"{category}\",\"ocr\"为\"{ocr}\",\"asr\"为\"{asr}\",请推断出该视频的\"{preference}\":" ) text = prompt.format(preference=preference, caption=caption, category=category, ocr=ocr, asr=asr, example=example) return text with gr.Blocks() as demo: text_api = gr.Textbox(label='OpenAI API key') text_caption = gr.Textbox(label='Caption') text_category = gr.Textbox(label='Category') text_asr = gr.Textbox(label='ASR') text_ocr = gr.Textbox(label='OCR') text_output = gr.Textbox(value='', label='Output') btn = gr.Button(value='Submit') btn.click(process, inputs=[text_api, text_caption, text_category, text_asr, text_ocr], outputs=[text_output]) if __name__ == "__main__": demo.launch()