import numpy as np from sentence_transformers import SentenceTransformer encoder = SentenceTransformer("../model/") tags = [] f = open('tags.txt', 'r') for line in f.readlines(): tags.append(line.strip()) f.close() tags_embed = encoder.encode(tags) tags_dis = [np.sqrt(np.dot(_, _.T)) for _ in tags_embed] print(tags_embed.shape, tags_dis.shape) with open('./tags_embed.npy', 'wb') as f: np.save(f, tags_embed) with open('./tags_dis.npy', 'wb') as f: np.save(f, tags_dis) # f = open('gpttag.txt', 'r') # data = eval(f.readline()) # f.close() # # out = "" # f = open('tags.txt', 'w') # for tmp in data: # if tmp[1] > 2: # out += tmp[0] + '\n' # # f.write(out) # f.close()