# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import math from typing import Callable, Dict, Iterable, List, Optional, Tuple, Union import numpy as np import torch from ..utils import add_start_docstrings from ..utils.logging import get_logger logger = get_logger(__name__) LOGITS_PROCESSOR_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search Return: `torch.FloatTensor` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ class LogitsProcessor: """Abstract base class for all logit processors that can be applied during generation.""" @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class LogitsWarper: """Abstract base class for all logit warpers that can be applied during generation with multinomial sampling.""" @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class LogitsProcessorList(list): """ This class can be used to create a list of [`LogitsProcessor`] or [`LogitsWarper`] to subsequently process a `scores` input tensor. This class inherits from list and adds a specific *__call__* method to apply each [`LogitsProcessor`] or [`LogitsWarper`] to the inputs. """ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.FloatTensor: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional kwargs that are specific to a logits processor. Return: `torch.FloatTensor` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ for processor in self: function_args = inspect.signature(processor.__call__).parameters if len(function_args) > 2: if not all(arg in kwargs for arg in list(function_args.keys())[2:]): raise ValueError( f"Make sure that all the required parameters: {list(function_args.keys())} for " f"{processor.__class__} are passed to the logits processor." ) scores = processor(input_ids, scores, **kwargs) else: scores = processor(input_ids, scores) return scores class MinLengthLogitsProcessor(LogitsProcessor): r""" [`LogitsProcessor`] enforcing a min-length by setting EOS probability to 0. Note that, for decoder-only models like most LLMs, the length includes the prompt. Args: min_length (`int`): The minimum length below which the score of `eos_token_id` is set to `-float("Inf")`. eos_token_id (`Union[int, List[int]]`): The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens. Examples: ```python >>> from transformers import AutoModelForCausalLM, AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m") >>> model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-560m") >>> inputs = tokenizer("A number:", return_tensors="pt") >>> gen_out = model.generate(**inputs) >>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0]) A number: one >>> # setting `min_length` to a value smaller than the uncontrolled output length has no impact >>> gen_out = model.generate(**inputs, min_length=3) >>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0]) A number: one >>> # setting a larger `min_length` will force the model to generate beyond its natural ending point, which is not >>> # necessarily incorrect >>> gen_out = model.generate(**inputs, min_length=10) >>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0]) A number: one thousand, nine hundred and ninety-four ``` """ def __init__(self, min_length: int, eos_token_id: Union[int, List[int]]): if not isinstance(min_length, int) or min_length < 0: raise ValueError(f"`min_length` has to be a non-negative integer, but is {min_length}") if isinstance(eos_token_id, int): eos_token_id = [eos_token_id] if not all(isinstance(i, int) for i in eos_token_id) or any(i < 0 for i in eos_token_id): logger.warning(f"`eos_token_id` has to be a list of positive integers, but is {eos_token_id}") self.min_length = min_length self.eos_token_id = eos_token_id @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: cur_len = input_ids.shape[-1] if cur_len < self.min_length: for i in self.eos_token_id: scores[:, i] = -float("inf") return scores class MinNewTokensLengthLogitsProcessor(LogitsProcessor): r""" [`LogitsProcessor`] enforcing a min-length of new tokens by setting EOS (End-Of-Sequence) token probability to 0. Contrarily to [`MinLengthLogitsProcessor`], this processor ignores the prompt. Args: prompt_length_to_skip (`int`): The input tokens length. Not a valid argument when used with `generate` as it will automatically assign the input length. min_new_tokens (`int`): The minimum *new* tokens length below which the score of `eos_token_id` is set to `-float("Inf")`. eos_token_id (`Union[int, List[int]]`): The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens. Examples: ```python >>> from transformers import AutoModelForCausalLM, AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m") >>> model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-560m") >>> inputs = tokenizer(["A number:"], return_tensors="pt") >>> gen_out = model.generate(**inputs) >>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0]) A number: one >>> # setting `min_new_tokens` will force the model to generate beyond its natural ending point, which is not >>> # necessarily incorrect >>> gen_out = model.generate(**inputs, min_new_tokens=2) >>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0]) A number: one thousand ``` """ def __init__(self, prompt_length_to_skip: int, min_new_tokens: int, eos_token_id: Union[int, List[int]]): for arg_name, arg_value in [ ("prompt_length_to_skip", prompt_length_to_skip), ("min_new_tokens", min_new_tokens), ]: if not isinstance(arg_value, int) or arg_value < 0: raise ValueError(f"`{arg_name}` has to be a positive integer, but is {arg_value}") if isinstance(eos_token_id, int): eos_token_id = [eos_token_id] if not all(isinstance(i, int) for i in eos_token_id) or any(i < 0 for i in eos_token_id): logger.warning(f"`eos_token_id` has to be a list of positive integers, but is {eos_token_id}") self.prompt_length_to_skip = prompt_length_to_skip self.min_new_tokens = min_new_tokens self.eos_token_id = eos_token_id @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: new_tokens_length = input_ids.shape[-1] - self.prompt_length_to_skip if new_tokens_length < self.min_new_tokens: for i in self.eos_token_id: scores[:, i] = -float("inf") return scores class TemperatureLogitsWarper(LogitsWarper): r""" [`LogitsWarper`] for temperature (exponential scaling output probability distribution), which effectively means that it can control the randomness of the predicted tokens. Often used together with [`TopPLogitsWarper`] and [`TopKLogitsWarper`]. Make sure that `do_sample=True` is included in the `generate` arguments otherwise the temperature value won't have any effect. Args: temperature (`float`): Strictly positive float value used to modulate the logits distribution. A value smaller than `1` decreases randomness (and vice versa), with `0` being equivalent to shifting all probability mass to the most likely token. Examples: ```python >>> import torch >>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed >>> set_seed(0) # for reproducibility >>> tokenizer = AutoTokenizer.from_pretrained("gpt2") >>> model = AutoModelForCausalLM.from_pretrained("gpt2") >>> model.config.pad_token_id = model.config.eos_token_id >>> inputs = tokenizer(["Hugging Face Company is"], return_tensors="pt") >>> # With temperature=1.0, the default, we consistently get random outputs due to random sampling. >>> generate_kwargs = {"max_new_tokens": 10, "do_sample": True, "temperature": 1.0, "num_return_sequences": 2} >>> outputs = model.generate(**inputs, **generate_kwargs) >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) ['Hugging Face Company is a joint venture between GEO Group, one of', 'Hugging Face Company is not an exact science – but what we believe does'] >>> # However, with temperature close to 0, it approximates greedy decoding strategies (invariant) >>> generate_kwargs["temperature"] = 0.0001 >>> outputs = model.generate(**inputs, **generate_kwargs) >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) ['Hugging Face Company is a company that has been around for over 20 years', 'Hugging Face Company is a company that has been around for over 20 years'] ``` """ def __init__(self, temperature: float): if not isinstance(temperature, float) or not (temperature > 0): except_msg = ( f"`temperature` (={temperature}) has to be a strictly positive float, otherwise your next token " "scores will be invalid." ) if isinstance(temperature, float) and temperature == 0.0: except_msg += " If you're looking for greedy decoding strategies, set `do_sample=False`." raise ValueError(except_msg) self.temperature = temperature @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: scores = scores / self.temperature return scores class RepetitionPenaltyLogitsProcessor(LogitsProcessor): r""" [`LogitsProcessor`] that prevents the repetition of previous tokens through a penalty. This penalty is applied at most once per token. Note that, for decoder-only models like most LLMs, the considered tokens include the prompt. In the original [paper](https://arxiv.org/pdf/1909.05858.pdf), the authors suggest the use of a penalty of around 1.2 to achieve a good balance between truthful generation and lack of repetition. To penalize and reduce repetition, use `penalty` values above 1.0, where a higher value penalizes more strongly. To reward and encourage repetition, use `penalty` values between 0.0 and 1.0, where a lower value rewards more strongly. Args: penalty (`float`): The parameter for repetition penalty. 1.0 means no penalty. Above 1.0 penalizes previously generated tokens. Between 0.0 and 1.0 rewards previously generated tokens. Examples: ```py >>> from transformers import AutoTokenizer, AutoModelForCausalLM >>> # Initializing the model and tokenizer for it >>> model = AutoModelForCausalLM.from_pretrained("distilgpt2") >>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2") >>> inputs = tokenizer(["I'm not going to"], return_tensors="pt") >>> # This shows a normal generate without any specific parameters >>> summary_ids = model.generate(**inputs) >>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True)[0]) I'm not going to be able to do that. I'm going to be able to do that >>> # This generates a penalty for repeated tokens >>> penalized_ids = model.generate(**inputs, repetition_penalty=1.1) >>> print(tokenizer.batch_decode(penalized_ids, skip_special_tokens=True)[0]) I'm not going to be able to do that. I'll just have to go out and play ``` """ def __init__(self, penalty: float): if not isinstance(penalty, float) or not (penalty > 0): raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}") self.penalty = penalty @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: score = torch.gather(scores, 1, input_ids) # if score < 0 then repetition penalty has to be multiplied to reduce the token probabilities score = torch.where(score < 0, score * self.penalty, score / self.penalty) scores.scatter_(1, input_ids, score) return scores class EncoderRepetitionPenaltyLogitsProcessor(LogitsProcessor): r""" [`LogitsProcessor`] that works similarly to [`RepetitionPenaltyLogitsProcessor`], but with an *inverse* penalty that is applied to the tokens present in the prompt. In other words, a penalty above 1.0 increases the odds of selecting tokens that were present in the prompt. It was designed to avoid hallucination in input-grounded tasks, like summarization. Although originally intended for encoder-decoder models, it can also be used with decoder-only models like LLMs. Args: penalty (`float`): The parameter for repetition penalty. 1.0 means no penalty. Above 1.0 rewards prompt tokens. Between 0.0 and 1.0 penalizes prompt tokens. encoder_input_ids (`torch.LongTensor`): The encoder_input_ids that should be repeated within the decoder ids. Examples: ```python >>> from transformers import AutoModelForCausalLM, AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m") >>> model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-560m") >>> inputs = tokenizer(["Alice and Bob. The third member's name was"], return_tensors="pt") >>> gen_out = model.generate(**inputs) >>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0]) Alice and Bob. The third member's name was not mentioned. >>> # With the `encoder_repetition_penalty` argument we can trigger this logits processor in `generate`, which can >>> # promote the use of prompt tokens ("Bob" in this example) >>> gen_out = model.generate(**inputs, encoder_repetition_penalty=1.2) >>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0]) Alice and Bob. The third member's name was Bob. The third member's name was Bob. ``` """ def __init__(self, penalty: float, encoder_input_ids: torch.LongTensor): if not isinstance(penalty, float) or not (penalty > 0): raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}") self.penalty = 1 / penalty self.encoder_input_ids = encoder_input_ids @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: score = torch.gather(scores, 1, self.encoder_input_ids) # if score < 0 then hallucination penalty has to be multiplied to increase the token probabilities score = torch.where(score < 0, score * self.penalty, score / self.penalty) scores.scatter_(1, self.encoder_input_ids, score) return scores class TopPLogitsWarper(LogitsWarper): """ [`LogitsWarper`] that performs top-p, i.e. restricting to top tokens summing to prob_cut_off <= prob_cut_off. Often used together with [`TemperatureLogitsWarper`] and [`TopKLogitsWarper`]. Args: top_p (`float`): If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or higher are kept for generation. filter_value (`float`, *optional*, defaults to -inf): All filtered values will be set to this float value. min_tokens_to_keep (`int`, *optional*, defaults to 1): Minimum number of tokens that cannot be filtered. Examples: ```python >>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed >>> set_seed(0) >>> model = AutoModelForCausalLM.from_pretrained("distilgpt2") >>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2") >>> inputs = tokenizer("A sequence: 1, 2", return_tensors="pt") >>> # With sampling, the output is unexpected -- sometimes too unexpected. >>> outputs = model.generate(**inputs, do_sample=True) >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]) A sequence: 1, 2, 0, 2, 2. 2, 2, 2, 2 >>> # With `top_p` sampling, the output gets restricted to high-probability tokens. >>> # Pro tip: In practice, LLMs use `top_p` in the 0.9-0.95 range. >>> outputs = model.generate(**inputs, do_sample=True, top_p=0.1) >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]) A sequence: 1, 2, 3, 4, 5, 6, 7, 8, 9 ``` """ def __init__(self, top_p: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1): top_p = float(top_p) if top_p < 0 or top_p > 1.0: raise ValueError(f"`top_p` has to be a float > 0 and < 1, but is {top_p}") if not isinstance(min_tokens_to_keep, int) or (min_tokens_to_keep < 1): raise ValueError(f"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}") self.top_p = top_p self.filter_value = filter_value self.min_tokens_to_keep = min_tokens_to_keep @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: sorted_logits, sorted_indices = torch.sort(scores, descending=False) cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1) # Remove tokens with cumulative top_p above the threshold (token with 0 are kept) sorted_indices_to_remove = cumulative_probs <= (1 - self.top_p) # Keep at least min_tokens_to_keep sorted_indices_to_remove[..., -self.min_tokens_to_keep :] = 0 # scatter sorted tensors to original indexing indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) scores = scores.masked_fill(indices_to_remove, self.filter_value) return scores class TopKLogitsWarper(LogitsWarper): r""" [`LogitsWarper`] that performs top-k, i.e. restricting to the k highest probability elements. Often used together with [`TemperatureLogitsWarper`] and [`TopPLogitsWarper`]. Args: top_k (`int`): The number of highest probability vocabulary tokens to keep for top-k-filtering. filter_value (`float`, *optional*, defaults to -inf): All filtered values will be set to this float value. min_tokens_to_keep (`int`, *optional*, defaults to 1): Minimum number of tokens that cannot be filtered. Examples: ```python >>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed >>> set_seed(0) >>> model = AutoModelForCausalLM.from_pretrained("distilgpt2") >>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2") >>> inputs = tokenizer("A sequence: A, B, C, D", return_tensors="pt") >>> # With sampling, the output is unexpected -- sometimes too unexpected. >>> outputs = model.generate(**inputs, do_sample=True) >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]) A sequence: A, B, C, D, G, H, I. A, M >>> # With `top_k` sampling, the output gets restricted the k most likely tokens. >>> # Pro tip: In practice, LLMs use `top_k` in the 5-50 range. >>> outputs = model.generate(**inputs, do_sample=True, top_k=2) >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]) A sequence: A, B, C, D, E, F, G, H, I ``` """ def __init__(self, top_k: int, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1): if not isinstance(top_k, int) or top_k <= 0: raise ValueError(f"`top_k` has to be a strictly positive integer, but is {top_k}") self.top_k = max(top_k, min_tokens_to_keep) self.filter_value = filter_value @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: top_k = min(self.top_k, scores.size(-1)) # Safety check # Remove all tokens with a probability less than the last token of the top-k indices_to_remove = scores < torch.topk(scores, top_k)[0][..., -1, None] scores = scores.masked_fill(indices_to_remove, self.filter_value) return scores class TypicalLogitsWarper(LogitsWarper): r""" [`LogitsWarper`] that performs typical decoding. Inspired on how humans use language, it prioritizes tokens whose log probability is close to the entropy of the token probability distribution. This means that the most likely tokens may be discarded in the process. See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information. Args: mass (`float`, *optional*, defaults to 0.9): Value of typical_p between 0 and 1 inclusive, defaults to 0.9. filter_value (`float`, *optional*, defaults to -inf): All filtered values will be set to this float value. min_tokens_to_keep (`int`, *optional*, defaults to 1): Minimum number of tokens that cannot be filtered. Examples: ```python >>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed >>> model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-560m") >>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m") >>> inputs = tokenizer("1, 2, 3", return_tensors="pt") >>> # We can see that greedy decoding produces a sequence of numbers >>> outputs = model.generate(**inputs) >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, >>> # For this particular seed, we can see that sampling produces nearly the same low-information (= low entropy) >>> # sequence >>> set_seed(18) >>> outputs = model.generate(**inputs, do_sample=True) >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]) 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 >>> # With `typical_p` set, the most obvious sequence is no longer produced, which may be good for your problem >>> set_seed(18) >>> outputs = model.generate( ... **inputs, do_sample=True, typical_p=0.1, return_dict_in_generate=True, output_scores=True ... ) >>> print(tokenizer.batch_decode(outputs.sequences, skip_special_tokens=True)[0]) 1, 2, 3 and 5 >>> # We can see that the token corresponding to "4" (token 934) in the second position, the most likely token >>> # as seen with greedy decoding, was entirely blocked out >>> print(outputs.scores[1][0, 934]) tensor(-inf) ``` """ def __init__(self, mass: float = 0.9, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1): mass = float(mass) if not (mass > 0 and mass < 1): raise ValueError(f"`typical_p` has to be a float > 0 and < 1, but is {mass}") if not isinstance(min_tokens_to_keep, int) or (min_tokens_to_keep < 1): raise ValueError(f"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}") self.filter_value = filter_value self.mass = mass self.min_tokens_to_keep = min_tokens_to_keep @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: # calculate entropy normalized = torch.nn.functional.log_softmax(scores, dim=-1) p = torch.exp(normalized) ent = -(normalized * p).nansum(-1, keepdim=True) # shift and sort shifted_scores = torch.abs((-normalized) - ent) sorted_scores, sorted_indices = torch.sort(shifted_scores, descending=False) sorted_logits = scores.gather(-1, sorted_indices) cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1) # Remove tokens with cumulative mass above the threshold last_ind = (cumulative_probs < self.mass).sum(dim=1) last_ind.clamp_(max=sorted_scores.shape[-1] - 1) sorted_indices_to_remove = sorted_scores > sorted_scores.gather(1, last_ind.view(-1, 1)) sorted_indices_to_remove[..., : self.min_tokens_to_keep] = 0 indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) scores = scores.masked_fill(indices_to_remove, self.filter_value) return scores class EpsilonLogitsWarper(LogitsWarper): r""" [`LogitsWarper`] that performs epsilon-sampling, i.e. restricting to tokens with `prob >= epsilon`. Takes the largest min_tokens_to_keep tokens if no tokens satisfy this constraint. See [Truncation Sampling as Language Model Desmoothing](https://arxiv.org/abs/2210.15191) for more information. Args: epsilon (`float`): If set to > 0, only the most tokens with probabilities `epsilon` or higher are kept for generation. filter_value (`float`, *optional*, defaults to -inf): All filtered values will be set to this float value. min_tokens_to_keep (`int`, *optional*, defaults to 1): Minimum number of tokens that cannot be filtered. Examples: ```python >>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed >>> set_seed(0) >>> model = AutoModelForCausalLM.from_pretrained("distilgpt2") >>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2") >>> inputs = tokenizer("A sequence: 1, 2", return_tensors="pt") >>> # With sampling, the output is unexpected -- sometimes too unexpected. >>> outputs = model.generate(**inputs, do_sample=True) >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]) A sequence: 1, 2, 0, 2, 2. 2, 2, 2, 2 >>> # With epsilon sampling, the output gets restricted to high-probability tokens. Note that this is similar to >>> # Top P sampling, which restricts tokens based on their cumulative probability. >>> # Pro tip: The paper recomends using `epsilon_cutoff` values between 3e-4 and 9e-4 >>> outputs = model.generate(**inputs, do_sample=True, epsilon_cutoff=0.1) >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]) A sequence: 1, 2, 3, 4, 5, 6, 7, 8, 9 ``` """ def __init__(self, epsilon: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1): epsilon = float(epsilon) if epsilon <= 0 or epsilon >= 1: raise ValueError(f"`epsilon_cutoff` has to be a float > 0 and < 1, but is {epsilon}") min_tokens_to_keep = int(min_tokens_to_keep) if min_tokens_to_keep < 1: raise ValueError( f"`min_tokens_to_keep` has to be a strictly positive integer, but is {min_tokens_to_keep}" ) self.epsilon = epsilon self.filter_value = filter_value self.min_tokens_to_keep = min_tokens_to_keep @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: # Determine which indices to remove probabilities = scores.softmax(dim=-1) indices_to_remove = probabilities < self.epsilon # Keep the words with the 'min_tokens_to_keep'-highest probabilities top_k = min(self.min_tokens_to_keep, scores.size(-1)) # Safety check indices_to_remove = indices_to_remove & (scores < torch.topk(scores, top_k)[0][..., -1, None]) scores = scores.masked_fill(indices_to_remove, self.filter_value) return scores class EtaLogitsWarper(LogitsWarper): r""" [`LogitsWarper`] that performs eta-sampling, a technique to filter out tokens with probabilities below a dynamic cutoff value, `eta`, which is calculated based on a combination of the hyperparameter `epsilon` and the entropy of the token probabilities, i.e. `eta := min(epsilon, sqrt(epsilon * e^-entropy(probabilities)))`. Takes the largest min_tokens_to_keep tokens if no tokens satisfy this constraint. It addresses the issue of poor quality in long samples of text generated by neural language models leading to more coherent and fluent text. See [Truncation Sampling as Language Model Desmoothing](https://arxiv.org/abs/2210.15191) for more information. Note: `do_sample` must be set to `True` for this `LogitsWarper` to work. Args: epsilon (`float`): A float value in the range (0, 1). Hyperparameter used to calculate the dynamic cutoff value, `eta`. The suggested values from the paper ranges from 3e-4 to 4e-3 depending on the size of the model. filter_value (`float`, *optional*, defaults to -inf): All values that are found to be below the dynamic cutoff value, `eta`, are set to this float value. This parameter is useful when logits need to be modified for very low probability tokens that should be excluded from generation entirely. min_tokens_to_keep (`int`, *optional*, defaults to 1): Specifies the minimum number of tokens that must be kept for generation, regardless of their probabilities. For example, if `min_tokens_to_keep` is set to 1, at least one token will always be kept for generation, even if all tokens have probabilities below the cutoff `eta`. Examples: ```python >>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed >>> set_seed(0) >>> model = AutoModelForCausalLM.from_pretrained("distilgpt2") >>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2") >>> inputs = tokenizer("A sequence: 1, 2", return_tensors="pt") >>> # With sampling, the output is unexpected -- sometimes too unexpected. >>> outputs = model.generate(**inputs, do_sample=True) >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]) A sequence: 1, 2, 0, 2, 2. 2, 2, 2, 2 >>> # With eta sampling, the output gets restricted to high-probability tokens. You can see it as a dynamic form of >>> # epsilon sampling that adapts its cutoff probability based on the entropy (high entropy = lower cutoff). >>> # Pro tip: The paper recomends using `eta_cutoff` values between 3e-4 to 4e-3 >>> outputs = model.generate(**inputs, do_sample=True, eta_cutoff=0.1) >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]) A sequence: 1, 2, 3, 4, 5, 6, 7, 8, 9 ``` """ def __init__(self, epsilon: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1): epsilon = float(epsilon) if epsilon <= 0 or epsilon >= 1: raise ValueError(f"`eta_cutoff` has to be a float > 0 and < 1, but is {epsilon}") min_tokens_to_keep = int(min_tokens_to_keep) if min_tokens_to_keep < 1: raise ValueError( f"`min_tokens_to_keep` has to be a strictly positive integer, but is {min_tokens_to_keep}" ) self.epsilon = torch.tensor(epsilon) self.filter_value = filter_value self.min_tokens_to_keep = min_tokens_to_keep @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: # Calculate the adaptive cutoff probabilities = scores.softmax(dim=-1) entropy = torch.distributions.Categorical(logits=scores).entropy() eta = torch.min(self.epsilon, torch.sqrt(self.epsilon) * torch.exp(-entropy))[..., None] indices_to_remove = probabilities < eta # Keep the words with the 'min_tokens_to_keep'-highest probabilities top_k = min(self.min_tokens_to_keep, scores.size(-1)) # Safety check indices_to_remove = indices_to_remove & (scores < torch.topk(scores, top_k)[0][..., -1, None]) scores = scores.masked_fill(indices_to_remove, self.filter_value) return scores def _get_ngrams(ngram_size: int, prev_input_ids: torch.Tensor, num_hypos: int): """ Assume ngram_size=2 and prev_input_ids=tensor([[40, 2883, 2712, 4346]]). The output of generated ngrams look like this {(40,): [2883], (2883,): [2712], (2712,): [4346]}. Args: ngram_size (`int`): The number sequential tokens taken as a group which may only occur once before being banned. prev_input_ids (`torch.Tensor`): Generated token ids for the current hypothesis. num_hypos (`int`): The number of hypotheses for which n-grams need to be generated. Returns: generated_ngrams (`dict`): Dictionary of generated ngrams. """ # Initialize an empty list of dictionaries, one for each hypothesis (index) in the range of num_hypos generated_ngrams = [{} for _ in range(num_hypos)] for idx in range(num_hypos): gen_tokens = prev_input_ids[idx].tolist() generated_ngram = generated_ngrams[idx] # Loop through each n-gram of size ngram_size in the list of tokens (gen_tokens) for ngram in zip(*[gen_tokens[i:] for i in range(ngram_size)]): prev_ngram_tuple = tuple(ngram[:-1]) generated_ngram[prev_ngram_tuple] = generated_ngram.get(prev_ngram_tuple, []) + [ngram[-1]] return generated_ngrams def _get_generated_ngrams(banned_ngrams, prev_input_ids, ngram_size, cur_len): """ Determines the banned tokens for the current hypothesis based on previously generated n-grams. Args: banned_ngrams (`dict`): A dictionary containing previously generated n-grams for each hypothesis. prev_input_ids (`torch.Tensor`): Generated token ids for the current hypothesis. ngram_size (`int`): The number sequential tokens taken as a group which may only occur once before being banned. cur_len (`int`): The current length of the token sequences for which the n-grams are being checked. Returns: List of tokens that are banned. """ # Before decoding the next token, prevent decoding of ngrams that have already appeared start_idx = cur_len + 1 - ngram_size ngram_idx = tuple(prev_input_ids[start_idx:cur_len].tolist()) return banned_ngrams.get(ngram_idx, []) def _calc_banned_ngram_tokens( ngram_size: int, prev_input_ids: torch.Tensor, num_hypos: int, cur_len: int ) -> List[Iterable[int]]: """Copied from fairseq for no_repeat_ngram in beam_search""" if cur_len + 1 < ngram_size: # return no banned tokens if we haven't generated no_repeat_ngram_size tokens yet return [[] for _ in range(num_hypos)] generated_ngrams = _get_ngrams(ngram_size, prev_input_ids, num_hypos) banned_tokens = [ _get_generated_ngrams(generated_ngrams[hypo_idx], prev_input_ids[hypo_idx], ngram_size, cur_len) for hypo_idx in range(num_hypos) ] return banned_tokens class NoRepeatNGramLogitsProcessor(LogitsProcessor): r""" N-grams are groups of "n" consecutive words, characters, or tokens taken from a sequence of text. Given the sentence: "She runs fast", the bi-grams (n=2) would be ("she", "runs") and ("runs", "fast"). In text generation, avoiding repetitions of word sequences provides a more diverse output. This [`LogitsProcessor`] enforces no repetition of n-grams by setting the scores of banned tokens to negative infinity which eliminates those tokens from consideration when further processing the scores. Note that, for decoder-only models like most LLMs, the prompt is also considered to obtain the n-grams. [Fairseq](https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345). Use n-gram penalties with care. For instance, penalizing 2-grams (bigrams) in an article about the city of New York might lead to undesirable outcomes where the city's name appears only once in the entire text. [Reference](https://huggingface.co/blog/how-to-generate) Args: ngram_size (`int`): All ngrams of size `ngram_size` can only occur once. Examples: ```py >>> from transformers import AutoTokenizer, AutoModelForCausalLM >>> model = AutoModelForCausalLM.from_pretrained("distilgpt2") >>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2") >>> inputs = tokenizer(["Today I"], return_tensors="pt") >>> output = model.generate(**inputs) >>> print(tokenizer.decode(output[0], skip_special_tokens=True)) Today I’m not sure if I’m going to be able to do it. >>> # Now let's add ngram size using `no_repeat_ngram_size`. This stops the repetitions ("I’m") in the output. >>> output = model.generate(**inputs, no_repeat_ngram_size=2) >>> print(tokenizer.decode(output[0], skip_special_tokens=True)) Today I’m not sure if I can get a better understanding of the nature of this issue ``` """ def __init__(self, ngram_size: int): if not isinstance(ngram_size, int) or ngram_size <= 0: raise ValueError(f"`ngram_size` has to be a strictly positive integer, but is {ngram_size}") self.ngram_size = ngram_size @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: num_batch_hypotheses = scores.shape[0] cur_len = input_ids.shape[-1] banned_batch_tokens = _calc_banned_ngram_tokens(self.ngram_size, input_ids, num_batch_hypotheses, cur_len) for i, banned_tokens in enumerate(banned_batch_tokens): scores[i, banned_tokens] = -float("inf") return scores class EncoderNoRepeatNGramLogitsProcessor(LogitsProcessor): r""" [`LogitsProcessor`] that works similarly to [`NoRepeatNGramLogitsProcessor`], but applied exclusively to prevent the repetition of n-grams present in the prompt. It was designed to promote chattiness in a language model, by preventing the generation of n-grams present in previous conversation rounds. Args: encoder_ngram_size (`int`): All ngrams of size `ngram_size` can only occur within the encoder input ids. encoder_input_ids (`int`): The encoder_input_ids that should not be repeated within the decoder ids. Examples: ```py >>> from transformers import AutoTokenizer, AutoModelForCausalLM >>> model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-560m") >>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m") >>> inputs = tokenizer("Alice: I love cats. What do you love?\nBob:", return_tensors="pt") >>> # With greedy decoding, we see Bob repeating Alice's opinion. If Bob was a chatbot, it would be a poor one. >>> outputs = model.generate(**inputs) >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]) Alice: I love cats. What do you love? Bob: I love cats. What do you >>> # With this logits processor, we can prevent Bob from repeating Alice's opinion. >>> outputs = model.generate(**inputs, encoder_no_repeat_ngram_size=2) >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]) Alice: I love cats. What do you love? Bob: My cats are very cute. ``` """ def __init__(self, encoder_ngram_size: int, encoder_input_ids: torch.LongTensor): if not isinstance(encoder_ngram_size, int) or encoder_ngram_size <= 0: raise ValueError( f"`encoder_ngram_size` has to be a strictly positive integer, but is {encoder_ngram_size}" ) self.ngram_size = encoder_ngram_size if len(encoder_input_ids.shape) == 1: encoder_input_ids = encoder_input_ids.unsqueeze(0) self.batch_size = encoder_input_ids.shape[0] self.generated_ngrams = _get_ngrams(encoder_ngram_size, encoder_input_ids, self.batch_size) @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: # B x num_beams num_hypos = scores.shape[0] num_beams = num_hypos // self.batch_size cur_len = input_ids.shape[-1] banned_batch_tokens = [ _get_generated_ngrams( self.generated_ngrams[hypo_idx // num_beams], input_ids[hypo_idx], self.ngram_size, cur_len ) for hypo_idx in range(num_hypos) ] for i, banned_tokens in enumerate(banned_batch_tokens): scores[i, banned_tokens] = -float("inf") return scores class SequenceBiasLogitsProcessor(LogitsProcessor): """ [`LogitsProcessor`] that applies an additive bias on sequences. The bias is applied to the last token of a sequence when the next generated token can complete it. Consequently, to take the most of biasing sequences with more than one token, consider using beam methods (to gracefully work around partially completed sequences that have a negative bias) and applying the bias to their prefixes (to ensure the bias is applied earlier). In order to get the token ids of the sequences that you want to bias, make sure to set `add_prefix_space=True` when initializing the tokenizer, and use `tokenizer(bad_words, add_special_tokens=False).input_ids`. The `add_prefix_space` argument is only supported for some slow tokenizers, as fast tokenizers' prefixing behaviours come from `pre tokenizers`. Read more [here](https://huggingface.co/docs/tokenizers/api/pre-tokenizers). Args: sequence_bias (`Dict[Tuple[int], float]`): Dictionary that maps a sequence of tokens to its bias term. Positive biases increase the odds of the sequence being selected, while negative biases do the opposite. If a sequence has a length of 1, its bias will always be applied. Otherwise, the bias will only be applied if the sequence in question is about to be completed (in the token selection step after this processor is applied). Examples: ```python >>> from transformers import AutoTokenizer, AutoModelForCausalLM >>> model = AutoModelForCausalLM.from_pretrained("gpt2") >>> tokenizer = AutoTokenizer.from_pretrained("gpt2") >>> inputs = tokenizer(["The full name of Donald is Donald"], return_tensors="pt") >>> summary_ids = model.generate(inputs["input_ids"], max_new_tokens=4) >>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True)[0]) The full name of Donald is Donald J. Trump Jr >>> # Now let's control generation through a bias. Please note that the tokenizer is initialized differently! >>> tokenizer_with_prefix_space = AutoTokenizer.from_pretrained("gpt2", add_prefix_space=True) >>> def get_tokens_as_tuple(word): ... return tuple(tokenizer_with_prefix_space([word], add_special_tokens=False).input_ids[0]) >>> # If we add a negative bias without beam search, it may become "stuck" in a prefix without good continuations >>> sequence_bias = {get_tokens_as_tuple("Trump"): -10.0} >>> biased_ids = model.generate(inputs["input_ids"], max_new_tokens=4, sequence_bias=sequence_bias) >>> print(tokenizer.batch_decode(biased_ids, skip_special_tokens=True)[0]) The full name of Donald is Donald J. Donald, >>> biased_ids = model.generate(inputs["input_ids"], max_new_tokens=4, num_beams=4, sequence_bias=sequence_bias) >>> print(tokenizer.batch_decode(biased_ids, skip_special_tokens=True)[0]) The full name of Donald is Donald Rumsfeld, >>> # We can also add a positive bias to nudge the model towards specific tokens or continuations >>> sequence_bias = {get_tokens_as_tuple("Donald Duck"): 10.0} >>> biased_ids = model.generate(inputs["input_ids"], max_new_tokens=4, num_beams=4, sequence_bias=sequence_bias) >>> print(tokenizer.batch_decode(biased_ids, skip_special_tokens=True)[0]) The full name of Donald is Donald Duck. ``` """ def __init__(self, sequence_bias: Dict[Tuple[int], float]): self.sequence_bias = sequence_bias self._validate_arguments() # Bias variables that will be populated on the first call (for retrocompatibility purposes, the vocabulary size # is infered in the first usage, which inhibits initializing here) self.length_1_bias = None self.prepared_bias_variables = False @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: # 1 - Prepares the bias tensors. This is only needed the first time the logit processor is called. if not self.prepared_bias_variables: self._prepare_bias_variables(scores) # 2 - prepares an empty bias to add bias = torch.zeros_like(scores) # 3 - include the bias from length = 1 bias += self.length_1_bias # 4 - include the bias from length > 1, after determining which biased sequences may be completed. for sequence_ids, sequence_bias in self.sequence_bias.items(): if len(sequence_ids) == 1: # the sequence is of length 1, already applied continue if len(sequence_ids) > input_ids.shape[1]: # the sequence is longer than the context, ignore continue prefix_length = len(sequence_ids) - 1 last_token = sequence_ids[-1] matching_rows = torch.eq( input_ids[:, -prefix_length:], torch.tensor(sequence_ids[:-1], dtype=input_ids.dtype, device=input_ids.device), ).prod(dim=1) bias[:, last_token] += torch.where( matching_rows.bool(), torch.tensor(sequence_bias, device=input_ids.device), torch.tensor(0.0, device=input_ids.device), ) # 5 - apply the bias to the scores scores = scores + bias return scores def _prepare_bias_variables(self, scores: torch.FloatTensor): vocabulary_size = scores.shape[-1] # Check biased tokens out of bounds invalid_biases = [] for sequence_ids in self.sequence_bias: for token_id in sequence_ids: if token_id >= vocabulary_size: invalid_biases.append(token_id) if len(invalid_biases) > 0: raise ValueError( f"The model vocabulary size is {vocabulary_size}, but the following tokens were being biased: " f"{invalid_biases}" ) # Precompute the bias tensors to be applied. Sequences of length 1 are kept separately, as they can be applied # with simpler logic. self.length_1_bias = torch.zeros((vocabulary_size,), dtype=torch.float).to(scores.device) for sequence_ids, bias in self.sequence_bias.items(): if len(sequence_ids) == 1: self.length_1_bias[sequence_ids[-1]] = bias self.prepared_bias_variables = True def _validate_arguments(self): sequence_bias = self.sequence_bias if not isinstance(sequence_bias, dict) or len(sequence_bias) == 0: raise ValueError(f"`sequence_bias` has to be a non-empty dictionary, but is {sequence_bias}.") if any(not isinstance(sequence_ids, tuple) for sequence_ids in sequence_bias.keys()): raise ValueError(f"`sequence_bias` has to be a dict with tuples as keys, but is {sequence_bias}.") if any( any((not isinstance(token_id, (int, np.integer)) or token_id < 0) for token_id in sequence_ids) or len(sequence_ids) == 0 for sequence_ids in sequence_bias.keys() ): raise ValueError( f"Each key in `sequence_bias` has to be a non-empty tuple of positive integers, but is " f"{sequence_bias}." ) if any(not isinstance(bias, float) for bias in sequence_bias.values()): raise ValueError(f"`sequence_bias` has to be a dict with floats as values, but is {sequence_bias}.") class NoBadWordsLogitsProcessor(SequenceBiasLogitsProcessor): """ [`LogitsProcessor`] that enforces that specified sequences will never be selected. In order to get the token ids of the words that should not appear in the generated text, make sure to set `add_prefix_space=True` when initializing the tokenizer, and use `tokenizer(bad_words, add_special_tokens=False).input_ids`. The `add_prefix_space` argument is only supported for some slow tokenizers, as fast tokenizers' prefixing behaviours come from `pre tokenizers`. Read more [here](https://huggingface.co/docs/tokenizers/api/pre-tokenizers). Args: bad_words_ids (`List[List[int]]`): List of list of token ids that are not allowed to be generated. eos_token_id (`Union[int, List[int]]`): The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens. Examples: ```python >>> from transformers import AutoTokenizer, AutoModelForCausalLM >>> model = AutoModelForCausalLM.from_pretrained("gpt2") >>> tokenizer = AutoTokenizer.from_pretrained("gpt2") >>> inputs = tokenizer(["In a word, the cake is a"], return_tensors="pt") >>> output_ids = model.generate(inputs["input_ids"], max_new_tokens=5, pad_token_id=tokenizer.eos_token_id) >>> print(tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]) In a word, the cake is a bit of a mess. >>> # Now let's take the bad words out. Please note that the tokenizer is initialized differently >>> tokenizer_with_prefix_space = AutoTokenizer.from_pretrained("gpt2", add_prefix_space=True) >>> def get_tokens_as_list(word_list): ... "Converts a sequence of words into a list of tokens" ... tokens_list = [] ... for word in word_list: ... tokenized_word = tokenizer_with_prefix_space([word], add_special_tokens=False).input_ids[0] ... tokens_list.append(tokenized_word) ... return tokens_list >>> bad_words_ids = get_tokens_as_list(word_list=["mess"]) >>> output_ids = model.generate( ... inputs["input_ids"], max_new_tokens=5, bad_words_ids=bad_words_ids, pad_token_id=tokenizer.eos_token_id ... ) >>> print(tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]) In a word, the cake is a bit of a surprise. ``` """ def __init__(self, bad_words_ids: List[List[int]], eos_token_id: Union[int, List[int]]): self.bad_word_ids = bad_words_ids self._validate_arguments() # Filter EOS token from bad_words_ids if eos_token_id is None: eos_token_id = [] if isinstance(eos_token_id, int): eos_token_id = [eos_token_id] bad_words_ids = list( filter(lambda bad_token_seq: all(bad_token_seq != [i] for i in eos_token_id), bad_words_ids) ) # Forbidding a sequence is equivalent to setting its bias to -inf sequence_bias = {tuple(sequence): float("-inf") for sequence in bad_words_ids} super().__init__(sequence_bias=sequence_bias) def _validate_arguments(self): bad_words_ids = self.bad_word_ids if not isinstance(bad_words_ids, list) or len(bad_words_ids) == 0: raise ValueError(f"`bad_words_ids` has to be a non-empty list, but is {bad_words_ids}.") if any(not isinstance(bad_word_ids, list) for bad_word_ids in bad_words_ids): raise ValueError(f"`bad_words_ids` has to be a list of lists, but is {bad_words_ids}.") if any( any((not isinstance(token_id, (int, np.integer)) or token_id < 0) for token_id in bad_word_ids) for bad_word_ids in bad_words_ids ): raise ValueError( f"Each list in `bad_words_ids` has to be a list of positive integers, but is {bad_words_ids}." ) class PrefixConstrainedLogitsProcessor(LogitsProcessor): r""" [`LogitsProcessor`] that enforces constrained generation and is useful for prefix-conditioned constrained generation. See [Autoregressive Entity Retrieval](https://arxiv.org/abs/2010.00904) for more information. Args: prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`): This function constraints the beam search to allowed tokens only at each step. This function takes 2 arguments `inputs_ids` and the batch ID `batch_id`. It has to return a list with the allowed tokens for the next generation step conditioned on the previously generated tokens `inputs_ids` and the batch ID `batch_id`. Examples: ```py >>> from transformers import AutoTokenizer, AutoModelForCausalLM >>> model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-560m") >>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m") >>> inputs = tokenizer("Alice and Bob", return_tensors="pt") >>> # By default, it continues generating according to the model's logits >>> outputs = model.generate(**inputs, max_new_tokens=5) >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]) Alice and Bob are friends >>> # We can contrain it with `prefix_allowed_tokens_fn` to force a certain behavior based on a prefix. >>> # For instance, we can force an entire entity to be generated when its beginning is detected. >>> entity = tokenizer(" Bob Marley", return_tensors="pt").input_ids[0] # 3 tokens >>> def prefix_allowed_tokens_fn(batch_id, input_ids): ... ''' ... Attempts to generate 'Bob Marley' when 'Bob' is detected. ... In this case, `batch_id` is not used, but you can set rules for each batch member. ... ''' ... if input_ids[-1] == entity[0]: ... return entity[1] ... elif input_ids[-2] == entity[0] and input_ids[-1] == entity[1]: ... return entity[2] ... return list(range(tokenizer.vocab_size)) # If no match, allow all tokens >>> outputs = model.generate(**inputs, max_new_tokens=5, prefix_allowed_tokens_fn=prefix_allowed_tokens_fn) >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]) Alice and Bob Marley ``` """ def __init__(self, prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]], num_beams: int): self._prefix_allowed_tokens_fn = prefix_allowed_tokens_fn self._num_beams = num_beams @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: mask = torch.full_like(scores, -math.inf) for batch_id, beam_sent in enumerate(input_ids.view(-1, self._num_beams, input_ids.shape[-1])): for beam_id, sent in enumerate(beam_sent): prefix_allowed_tokens = self._prefix_allowed_tokens_fn(batch_id, sent) if len(prefix_allowed_tokens) == 0: raise ValueError( f"`prefix_allowed_tokens_fn` returned an empty list for batch ID {batch_id}." f"This means that the constraint is unsatisfiable. Please check your implementation" f"of `prefix_allowed_tokens_fn` " ) mask[batch_id * self._num_beams + beam_id, prefix_allowed_tokens] = 0 return scores + mask class HammingDiversityLogitsProcessor(LogitsProcessor): r""" [`LogitsProcessor`] that enforces diverse beam search. Note that this logits processor is only effective for [`PreTrainedModel.group_beam_search`]. See [Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence Models](https://arxiv.org/pdf/1610.02424.pdf) for more details. Traditional beam search often generates very similar sequences across different beams. `HammingDiversityLogitsProcessor` addresses this by penalizing beams that generate tokens already chosen by other beams in the same time step. Args: diversity_penalty (`float`): This value is subtracted from a beam's score if it generates a token same as any beam from other group at a particular time. A higher `diversity_penalty` will enforce greater diversity among the beams. Adjusting this value can help strike a balance between diversity and natural likelihood. num_beams (`int`): Number of beams for beam search. 1 means no beam search. num_beam_groups (`int`): Number of groups to divide `num_beams` into in order to ensure diversity among different groups of beams. [this paper](https://arxiv.org/pdf/1610.02424.pdf) for more details. Examples: ```python >>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM >>> import torch >>> # Initialize the model and tokenizer >>> tokenizer = AutoTokenizer.from_pretrained("t5-base") >>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base") >>> # A long text about the solar system >>> text = ( ... "The Solar System is a gravitationally bound system comprising the Sun and the objects that orbit it, " ... "either directly or indirectly. Of the objects that orbit the Sun directly, the largest are the eight " ... "planets, with the remainder being smaller objects, such as the five dwarf planets and small Solar System " ... "bodies. The Solar System formed 4.6 billion years ago from the gravitational collapse of a giant " ... "interstellar molecular cloud." ... ) >>> inputs = tokenizer("summarize: " + text, return_tensors="pt") >>> # Generate diverse summary >>> outputs_diverse = model.generate( ... **inputs, ... num_beam_groups=2, ... diversity_penalty=10.0, ... max_length=100, ... num_beams=4, ... num_return_sequences=2, ... ) >>> summaries_diverse = tokenizer.batch_decode(outputs_diverse, skip_special_tokens=True) >>> # Generate non-diverse summary >>> outputs_non_diverse = model.generate( ... **inputs, ... max_length=100, ... num_beams=4, ... num_return_sequences=2, ... ) >>> summary_non_diverse = tokenizer.batch_decode(outputs_non_diverse, skip_special_tokens=True) >>> # With `diversity_penalty`, the resulting beams are much more diverse >>> print(summary_non_diverse) ['the solar system formed 4.6 billion years ago from the collapse of a giant interstellar molecular cloud. of the objects that orbit the Sun directly, the largest are the eight planets.', 'the Solar System formed 4.6 billion years ago from the collapse of a giant interstellar molecular cloud. of the objects that orbit the Sun directly, the largest are the eight planets.'] >>> print(summaries_diverse) ['the solar system formed 4.6 billion years ago from the collapse of a giant interstellar molecular cloud. of the objects that orbit the Sun directly, the largest are the eight planets.', 'the solar system formed 4.6 billion years ago from the collapse of a giant interstellar molecular cloud. of the objects that orbit the Sun directly, the largest are the eight planets. the rest of the objects are smaller objects, such as the five dwarf planets and small solar system bodies.'] ``` """ def __init__(self, diversity_penalty: float, num_beams: int, num_beam_groups: int): if not isinstance(diversity_penalty, float) or (not diversity_penalty > 0.0): raise ValueError("`diversity_penalty` should be a float strictly larger than 0.") self._diversity_penalty = diversity_penalty if not isinstance(num_beams, int) or num_beams < 2: raise ValueError("`num_beams` should be an integer strictly larger than 1.") self._num_beams = num_beams if not isinstance(num_beam_groups, int) or num_beam_groups < 2: raise ValueError("`num_beam_groups` should be an integer strictly larger than 1.") if num_beam_groups > num_beams: raise ValueError("`beam_groups` has to be smaller or equal to `num_beams`.") self._num_sub_beams = num_beams // num_beam_groups def __call__( self, input_ids: torch.LongTensor, scores: torch.FloatTensor, current_tokens: torch.LongTensor, beam_group_idx: int, ) -> torch.FloatTensor: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search current_tokens (`torch.LongTensor` of shape `(batch_size)`): Indices of input sequence tokens in the vocabulary, corresponding to the tokens selected by the other beam groups in the current generation step. beam_group_idx (`int`): The index of the beam group currently being processed. Return: `torch.FloatTensor` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ # hamming diversity: penalise using same token in current group which was used in previous groups at # the same time step batch_size = current_tokens.shape[0] // self._num_beams group_start_idx = beam_group_idx * self._num_sub_beams group_end_idx = min(group_start_idx + self._num_sub_beams, self._num_beams) group_size = group_end_idx - group_start_idx vocab_size = scores.shape[-1] if group_start_idx == 0: return scores for batch_idx in range(batch_size): # predicted tokens of last time step of previous groups previous_group_tokens = current_tokens[ batch_idx * self._num_beams : batch_idx * self._num_beams + group_start_idx ] token_frequency = torch.bincount(previous_group_tokens, minlength=vocab_size).to(scores.device) scores[batch_idx * group_size : (batch_idx + 1) * group_size] -= self._diversity_penalty * token_frequency return scores class ForcedBOSTokenLogitsProcessor(LogitsProcessor): r""" [`LogitsProcessor`] that enforces the specified token as the first generated token. Used with encoder-decoder models. Args: bos_token_id (`int`): The id of the token to force as the first generated token. Examples: ```python >>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM >>> model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small") >>> tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small") >>> inputs = tokenizer("Translate from English to German: I love cats.", return_tensors="pt") >>> # By default, it continues generating according to the model's logits >>> outputs = model.generate(**inputs, max_new_tokens=10) >>> print(tokenizer.batch_decode(outputs)[0]) Ich liebe Kitty. >>> # We can use `forced_bos_token_id` to force the start of generation with an encoder-decoder model >>> # (including forcing it to end straight away with an EOS token) >>> outputs = model.generate(**inputs, max_new_tokens=10, forced_bos_token_id=tokenizer.eos_token_id) >>> print(tokenizer.batch_decode(outputs)[0]) ``` """ def __init__(self, bos_token_id: int): self.bos_token_id = bos_token_id @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: cur_len = input_ids.shape[-1] if cur_len == 1: num_tokens = scores.shape[1] scores[:, [i for i in range(num_tokens) if i != self.bos_token_id]] = -float("inf") scores[:, self.bos_token_id] = 0 return scores class ForcedEOSTokenLogitsProcessor(LogitsProcessor): r""" [`LogitsProcessor`] that enforces the specified token as the last generated token when `max_length` is reached. Args: max_length (`int`): The maximum length of the sequence to be generated. eos_token_id (`Union[int, List[int]]`): The id of the token to force as the last generated token when `max_length` is reached. Optionally, use a list to set multiple *end-of-sequence* tokens. Examples: ```python >>> from transformers import AutoTokenizer, AutoModelForCausalLM >>> model = AutoModelForCausalLM.from_pretrained("distilgpt2") >>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2") >>> inputs = tokenizer("A sequence: 1, 2, 3", return_tensors="pt") >>> # By default, it continues generating according to the model's logits >>> outputs = model.generate(**inputs, max_new_tokens=10) >>> print(tokenizer.batch_decode(outputs)[0]) A sequence: 1, 2, 3, 4, 5, 6, 7, 8 >>> # `forced_eos_token_id` ensures the generation ends with a EOS token >>> outputs = model.generate(**inputs, max_new_tokens=10, forced_eos_token_id=tokenizer.eos_token_id) >>> print(tokenizer.batch_decode(outputs)[0]) A sequence: 1, 2, 3, 4, 5, 6, 7,<|endoftext|> ``` """ def __init__(self, max_length: int, eos_token_id: Union[int, List[int]]): self.max_length = max_length if isinstance(eos_token_id, int): eos_token_id = [eos_token_id] self.eos_token_id = eos_token_id @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: cur_len = input_ids.shape[-1] if cur_len == self.max_length - 1: num_tokens = scores.shape[1] scores[:, [i for i in range(num_tokens) if i not in self.eos_token_id]] = -float("inf") for i in self.eos_token_id: scores[:, i] = 0 return scores class InfNanRemoveLogitsProcessor(LogitsProcessor): r""" [`LogitsProcessor`] that removes all `nan` and `inf` values to avoid the generation method to fail. Note that using the logits processor should only be used if necessary since it can slow down the generation method. This logits processor has no `generate` example, as there shouldn't be a correct combination of flags that warrants its use. """ @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: # set all nan values to 0.0 scores[scores != scores] = 0.0 # set all +/-inf values to max/min possible value scores[scores == float("inf")] = torch.finfo(scores.dtype).max scores[scores == float("-inf")] = torch.finfo(scores.dtype).min return scores class ExponentialDecayLengthPenalty(LogitsProcessor): r""" [`LogitsProcessor`] that exponentially increases the score of the `eos_token_id` after `start_index` has been reached. This allows generating shorter sequences without having a hard cutoff, allowing the `eos_token` to be predicted in a meaningful position. Args: exponential_decay_length_penalty (`tuple(int, float)`): This tuple shall consist of: `(start_index, decay_factor)` where `start_index` indicates where penalty starts and `decay_factor` represents the factor of exponential decay eos_token_id (`Union[int, List[int]]`): The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens. input_ids_seq_length (`int`): The length of the input sequence. Examples: ```python >>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed >>> model = AutoModelForCausalLM.from_pretrained("gpt2") >>> tokenizer = AutoTokenizer.from_pretrained("gpt2") >>> text = "Just wanted to let you know, I" >>> inputs = tokenizer(text, return_tensors="pt") >>> # Let's consider that we want short sentences, so we limit `max_length=30`. However, we observe that the answer >>> # tends to end abruptly. >>> set_seed(1) >>> outputs = model.generate(**inputs, do_sample=True, temperature=0.9, max_length=30, pad_token_id=50256) >>> print(tokenizer.batch_decode(outputs)[0]) Just wanted to let you know, I received a link to an ebook, the book How To Start A Social Network which was published in 2010. Although >>> # To promote the appearance of the EOS token at the right time, we add the `exponential_decay_length_penalty = >>> # (start_index, decay_factor)`. Instead of cutting at max_tokens, the output comes to an end before and usually >>> # with more meaning. What happens is that starting from `start_index` the EOS token score will be increased >>> # by `decay_factor` exponentially. However, if you set a high decay factor, you may also end up with abruptly >>> # ending sequences. >>> set_seed(1) >>> outputs = model.generate( ... **inputs, ... do_sample=True, ... temperature=0.9, ... max_length=30, ... pad_token_id=50256, ... exponential_decay_length_penalty=(15, 1.6), ... ) >>> print(tokenizer.batch_decode(outputs)[0]) Just wanted to let you know, I received a link to an ebook, the book How To Start A Social Network which<|endoftext|> >>> # With a small decay factor, you will have a higher chance of getting a meaningful sequence. >>> set_seed(1) >>> outputs = model.generate( ... **inputs, ... do_sample=True, ... temperature=0.9, ... max_length=30, ... pad_token_id=50256, ... exponential_decay_length_penalty=(15, 1.01), ... ) >>> print(tokenizer.batch_decode(outputs)[0]) Just wanted to let you know, I received a link to an ebook, the book How To Start A Social Network which was published in 2010.<|endoftext|> ``` """ def __init__( self, exponential_decay_length_penalty: Tuple[int, float], eos_token_id: Union[int, List[int]], input_ids_seq_length: int, ): self.regulation_start = exponential_decay_length_penalty[0] + input_ids_seq_length self.regulation_factor = exponential_decay_length_penalty[1] if isinstance(eos_token_id, int): eos_token_id = [eos_token_id] self.eos_token_id = eos_token_id @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: cur_len = input_ids.shape[-1] if cur_len > self.regulation_start: for i in self.eos_token_id: penalty_idx = cur_len - self.regulation_start # To support negative logits we compute the penalty of the absolute value and add to the original logit scores[:, i] = scores[:, i] + torch.abs(scores[:, i]) * (pow(self.regulation_factor, penalty_idx) - 1) return scores class LogitNormalization(LogitsProcessor, LogitsWarper): r""" [`LogitsWarper`] and [`LogitsProcessor`] for normalizing the scores using log-softmax. It's important to normalize the scores during beam search, after applying the logits processors or warpers, since the search algorithm used in this library doesn't do it (it only does it before, but they may need re-normalization) but it still supposes that the scores are normalized when comparing the hypotheses. Examples: ```python >>> from transformers import AutoTokenizer, AutoModelForCausalLM >>> import torch >>> model = AutoModelForCausalLM.from_pretrained("distilgpt2") >>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2") >>> inputs = tokenizer("A sequence: 1, 2, 3", return_tensors="pt") >>> # By default, the scores are not normalized -- the sum of their exponentials is NOT a normalized probability >>> # distribution, summing to 1 >>> outputs = model.generate(**inputs, return_dict_in_generate=True, output_scores=True) >>> print(torch.sum(torch.exp(outputs.scores[-1]))) tensor(816.3250) >>> # Normalizing them may have a positive impact on beam methods, or when using the scores on your application >>> outputs = model.generate(**inputs, renormalize_logits=True, return_dict_in_generate=True, output_scores=True) >>> print(torch.sum(torch.exp(outputs.scores[-1]))) tensor(1.0000) ``` """ @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: scores = scores.log_softmax(dim=-1) return scores class SuppressTokensAtBeginLogitsProcessor(LogitsProcessor): r""" [`SuppressTokensAtBeginLogitsProcessor`] supresses a list of tokens as soon as the `generate` function starts generating using `begin_index` tokens. This should ensure that the tokens defined by `begin_suppress_tokens` are not generated at the begining. Originally created for [Whisper](https://huggingface.co/docs/transformers/model_doc/whisper). Examples: ```python >>> from transformers import AutoProcessor, WhisperForConditionalGeneration >>> from datasets import load_dataset >>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt") >>> # Whisper has `begin_suppress_tokens` set by default (= `[220, 50256]`). 50256 is the EOS token, so this means >>> # it can't generate and EOS token in the first iteration, but it can in the others. >>> outputs = model.generate(**inputs, return_dict_in_generate=True, output_scores=True) >>> print(outputs.scores[1][0, 50256]) # 1 (and not 0) is the first freely generated token tensor(-inf) >>> print(outputs.scores[-1][0, 50256]) # in other places we can see some probability mass for EOS tensor(29.9010) >>> # If we disable `begin_suppress_tokens`, we can generate EOS in the first iteration. >>> outputs = model.generate( ... **inputs, return_dict_in_generate=True, output_scores=True, begin_suppress_tokens=None ... ) >>> print(outputs.scores[1][0, 50256]) tensor(11.2027) ``` """ def __init__(self, begin_suppress_tokens, begin_index): self.begin_suppress_tokens = list(begin_suppress_tokens) self.begin_index = begin_index @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: if input_ids.shape[1] == self.begin_index: scores[:, self.begin_suppress_tokens] = -float("inf") return scores class SuppressTokensLogitsProcessor(LogitsProcessor): r""" This processor can be used to suppress a list of tokens. The processor will set their log probs to `-inf` so that they are not generated. Originally created for [Whisper](https://huggingface.co/docs/transformers/model_doc/whisper). Examples: ```python >>> from transformers import AutoProcessor, WhisperForConditionalGeneration >>> from datasets import load_dataset >>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt") >>> # Whisper has a long list of suppressed tokens. For instance, in this case, the token 1 is suppressed by default. >>> outputs = model.generate(**inputs, return_dict_in_generate=True, output_scores=True) >>> print(outputs.scores[1][0, 1]) # 1 (and not 0) is the first freely generated token tensor(-inf) >>> # If we disable `suppress_tokens`, we can generate it. >>> outputs = model.generate(**inputs, return_dict_in_generate=True, output_scores=True, suppress_tokens=None) >>> print(outputs.scores[1][0, 1]) tensor(5.7738) ``` """ def __init__(self, suppress_tokens): self.suppress_tokens = list(suppress_tokens) @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: scores[:, self.suppress_tokens] = -float("inf") return scores class ForceTokensLogitsProcessor(LogitsProcessor): r""" This processor takes a list of pairs of integers which indicates a mapping from generation indices to token indices that will be forced before generation. The processor will set their log probs to `inf` so that they are sampled at their corresponding index. Originally created for [Whisper](https://huggingface.co/docs/transformers/model_doc/whisper). Examples: ```python >>> from transformers import AutoProcessor, WhisperForConditionalGeneration >>> from datasets import load_dataset >>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt") >>> # This Whisper model forces the generation to start with `50362` at the first position by default, i.e. >>> # `"forced_decoder_ids": [[1, 50362]]`. This means all other tokens are masked out. >>> outputs = model.generate(**inputs, return_dict_in_generate=True, output_scores=True) >>> print( ... all(outputs.scores[0][0, i] == float("-inf") for i in range(processor.tokenizer.vocab_size) if i != 50362) ... ) True >>> print(outputs.scores[0][0, 50362]) tensor(0.) >>> # If we disable `forced_decoder_ids`, we stop seeing that effect >>> outputs = model.generate(**inputs, return_dict_in_generate=True, output_scores=True, forced_decoder_ids=None) >>> print( ... all(outputs.scores[0][0, i] == float("-inf") for i in range(processor.tokenizer.vocab_size) if i != 50362) ... ) False >>> print(outputs.scores[0][0, 50362]) tensor(19.3140) ``` """ def __init__(self, force_token_map: List[List[int]]): self.force_token_map = dict(force_token_map) @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: generation_idx = input_ids.shape[-1] current_token = self.force_token_map.get(generation_idx, None) if current_token is not None: scores[:, :] = -float("inf") scores[:, current_token] = 0 return scores class WhisperTimeStampLogitsProcessor(LogitsProcessor): r""" [`LogitsProcessor`] that modifies the logits for the generation of timestamps in the transcription. When the input tokens are at a specific threshold, the processor sets the scores to negative infinity. The processor makes sure that timestamp tokens appear in pairs, by masking out the logits that would break this pairing pattern. This is done to maintain the consistency and structure of generated timestamps. It also ensures that when the predicted probability of sampling any of the timestamp token is greater than any individual non-timestamp token, those non-timestamp logits are set to negative infinity. This is done to ensure the generation of timestamps over other potential tokens. See [the paper](https://arxiv.org/abs/2212.04356) for more information. Args: generate_config (`GenerateConfig`): The generate config used to generate the output. The following parameters are required: eos_token_id (`int`, *optional*, defaults to 50257): The id of the *end-of-sequence* token. no_timestamps_token_id (`int`, *optional*, defaults to 50363): The id of the `"<|notimestamps|>"` token. max_initial_timestamp_index (`int`, *optional*, defaults to 1): Used to set the maximum value of the initial timestamp. This is used to prevent the model from predicting timestamps that are too far in the future. _detect_timestamp_from_logprob (`bool`, *optional*): Whether timestamps can be predicted from logprobs over all timestamps. Examples: ``` python >>> import torch >>> from transformers import AutoProcessor, WhisperForConditionalGeneration, GenerationConfig >>> from datasets import load_dataset >>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = processor(ds[3]["audio"]["array"], return_tensors="pt") >>> input_features = inputs.input_features >>> #Displaying timestamps >>> generated_ids = model.generate(inputs=input_features, return_timestamps=True) >>> transcription = processor.batch_decode(generated_ids, decode_with_timestamps=True)[0] >>> print("Transcription:", transcription) Transcription: <|startoftranscript|><|0.00|> He has grave doubts whether Sir Frederick Layton's work is really Greek after all, and can<|6.44|><|6.44|> discover in it but little of rocky Ithaca.<|9.44|><|endoftext|> >>> #No timestamps & change EOS: >>> #This allows the user to select a specific token to terminate the sequence on, in this case it's the word "can"(460) >>> model.generation_config.eos_token_id = 460 >>> generated_ids = model.generate(inputs=input_features,return_timestamps=False) >>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] >>> print("Transcription:", transcription) Transcription: He has grave doubts whether Sir Frederick Layton's work is really Greek after all and can ``` """ def __init__( self, generate_config, _detect_timestamp_from_logprob: Optional[bool] = None ): # support for the kwargs self.eos_token_id = generate_config.eos_token_id self.no_timestamps_token_id = generate_config.no_timestamps_token_id self.timestamp_begin = generate_config.no_timestamps_token_id + 1 # this variable is mostly just used for testing self._detect_timestamp_from_logprob = ( _detect_timestamp_from_logprob if _detect_timestamp_from_logprob is not None else getattr(generate_config, "_detect_timestamp_from_logprob", True) ) self.begin_index = ( len(generate_config.forced_decoder_ids) + 1 if generate_config.forced_decoder_ids is not None else 1 ) self.max_initial_timestamp_index = getattr(generate_config, "max_initial_timestamp_index", None) @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: # suppress <|notimestamps|> which is handled by without_timestamps scores[:, self.no_timestamps_token_id] = -float("inf") # timestamps have to appear in pairs, except directly before eos_token; mask logits accordingly for k in range(input_ids.shape[0]): sampled_tokens = input_ids[k, self.begin_index :] seq = list(sampled_tokens.tolist()) last_was_timestamp = len(seq) >= 1 and seq[-1] >= self.timestamp_begin penultimate_was_timestamp = len(seq) < 2 or seq[-2] >= self.timestamp_begin if last_was_timestamp: if penultimate_was_timestamp: # has to be non-timestamp scores[k, self.timestamp_begin :] = -float("inf") else: # cannot be normal text tokens scores[k, : self.eos_token_id] = -float("inf") timestamps = sampled_tokens[sampled_tokens.ge(self.timestamp_begin)] if timestamps.numel() > 0: # `timestamps` shouldn't decrease; forbid timestamp tokens smaller than the last # The following lines of code are copied from: https://github.com/openai/whisper/pull/914/files#r1137085090 if last_was_timestamp and not penultimate_was_timestamp: timestamp_last = timestamps[-1] else: # Avoid to emit <|0.00|> again timestamp_last = timestamps[-1] + 1 scores[k, self.timestamp_begin : timestamp_last] = -float("inf") # apply the `max_initial_timestamp` option if input_ids.shape[1] == self.begin_index: scores[:, : self.timestamp_begin] = -float("inf") if self.max_initial_timestamp_index is not None: last_allowed = self.timestamp_begin + self.max_initial_timestamp_index scores[:, last_allowed + 1 :] = -float("inf") # if sum of probability over timestamps is above any other token, sample timestamp logprobs = torch.nn.functional.log_softmax(scores.float(), dim=-1) for k in range(input_ids.shape[0]): timestamp_logprob = logprobs[k, self.timestamp_begin :].logsumexp(dim=-1) max_text_token_logprob = logprobs[k, : self.timestamp_begin].max() if timestamp_logprob > max_text_token_logprob and self._detect_timestamp_from_logprob: scores[k, : self.timestamp_begin] = -float("inf") return scores class ClassifierFreeGuidanceLogitsProcessor(LogitsProcessor): r""" [`LogitsProcessor`] for classifier free guidance (CFG). The scores are split over the batch dimension, where the first half correspond to the conditional logits (predicted from the input prompt) and the second half correspond to the unconditional logits (predicted from an empty or 'null' prompt). The processor computes a weighted average across the conditional and unconditional logits, parameterised by the `guidance_scale`. See [the paper](https://arxiv.org/abs/2306.05284) for more information. This logits processor is exclusivelly compatible with [MusicGen](https://huggingface.co/docs/transformers/main/en/model_doc/musicgen) Args: guidance_scale (float): The guidance scale for classifier free guidance (CFG). CFG is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages the model to generate samples that are more closely linked to the input prompt, usually at the expense of poorer quality. Examples: ```python >>> from transformers import AutoProcessor, MusicgenForConditionalGeneration >>> processor = AutoProcessor.from_pretrained("facebook/musicgen-small") >>> model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small") >>> inputs = processor( ... text=["80s pop track with bassy drums and synth", "90s rock song with loud guitars and heavy drums"], ... padding=True, ... return_tensors="pt", ... ) >>> audio_values = model.generate(**inputs, do_sample=True, guidance_scale=3, max_new_tokens=256) ``` """ def __init__(self, guidance_scale): if guidance_scale > 1: self.guidance_scale = guidance_scale else: raise ValueError( "Require guidance scale >1 to use the classifier free guidance processor, got guidance scale " f"{guidance_scale}." ) @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: # simple check to make sure we have compatible batch sizes between our # logits scores (cond + uncond) and input ids (cond only) if scores.shape[0] != 2 * input_ids.shape[0]: raise ValueError( f"Logits should have twice the batch size of the input ids, the first half of batches corresponding to " f"the conditional inputs, and the second half of batches corresponding to the unconditional inputs. Got " f"batch size {scores.shape[0]} for the logits and {input_ids.shape[0]} for the input ids." ) unguided_bsz = scores.shape[0] // 2 cond_logits, uncond_logits = scores.split(unguided_bsz, dim=0) scores = uncond_logits + (cond_logits - uncond_logits) * self.guidance_scale return scores class AlternatingCodebooksLogitsProcessor(LogitsProcessor): r""" [`LogitsProcessor`] enforcing alternated generation between the two codebooks of Bark. This logits processor is exclusivelly compatible with [Bark](https://huggingface.co/docs/transformers/en/model_doc/bark)'s fine submodel. See the model documentation for examples. Args: input_start_len (`int`): The length of the initial input sequence. semantic_vocab_size (`int`): Vocabulary size of the semantic part, i.e number of tokens associated to the semantic vocabulary. codebook_size (`int`): Number of tokens associated to the codebook. """ def __init__(self, input_start_len: int, semantic_vocab_size: int, codebook_size: int): if not isinstance(input_start_len, int) or input_start_len < 0: raise ValueError(f"`input_starting_length` has to be a non-negative integer, but is {input_start_len}") self.input_start_len = input_start_len self.semantic_vocab_size = semantic_vocab_size self.codebook_size = codebook_size def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: curr_len = input_ids.shape[-1] # even -> first codebook, odd -> second codebook is_first_codebook = ((curr_len - self.input_start_len) % 2) == 0 if is_first_codebook: scores[:, : self.semantic_vocab_size] = -float("inf") scores[:, self.semantic_vocab_size + self.codebook_size :] = -float("inf") else: scores[:, : self.semantic_vocab_size + self.codebook_size] = -float("inf") return scores class UnbatchedClassifierFreeGuidanceLogitsProcessor(LogitsProcessor): r""" Logits processor for Classifier-Free Guidance (CFG). The processors computes a weighted average across scores from prompt conditional and prompt unconditional (or negative) logits, parameterized by the `guidance_scale`. The unconditional scores are computed internally by prompting `model` with the `unconditional_ids` branch. See [the paper](https://arxiv.org/abs/2306.17806) for more information. Args: guidance_scale (`float`): The guidance scale for classifier free guidance (CFG). CFG is enabled by setting `guidance_scale != 1`. Higher guidance scale encourages the model to generate samples that are more closely linked to the input prompt, usually at the expense of poorer quality. A value smaller than 1 has the opposite effect, while making the negative prompt provided with negative_prompt_ids (if any) act as a positive prompt. model (`PreTrainedModel`): The model computing the unconditional scores. Supposedly the same as the one computing the conditional scores. Both models must use the same tokenizer. unconditional_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of input sequence tokens in the vocabulary for the unconditional branch. If unset, will default to the last token of the prompt. unconditional_attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Attention mask for unconditional_ids. use_cache (`bool`, *optional*, defaults to `True`): Whether to cache key/values during the negative prompt forward pass. Examples: ```python >>> from transformers import AutoTokenizer, AutoModelForCausalLM >>> model = AutoModelForCausalLM.from_pretrained("gpt2") >>> tokenizer = AutoTokenizer.from_pretrained("gpt2") >>> inputs = tokenizer(["Today, a dragon flew over Paris, France,"], return_tensors="pt") >>> out = model.generate(inputs["input_ids"], guidance_scale=1.5) >>> tokenizer.batch_decode(out, skip_special_tokens=True)[0] 'Today, a dragon flew over Paris, France, killing at least 50 people and injuring more than 100' >>> # with a negative prompt >>> neg_inputs = tokenizer(["A very happy event happened,"], return_tensors="pt") >>> out = model.generate(inputs["input_ids"], guidance_scale=2, negative_prompt_ids=neg_inputs["input_ids"]) >>> tokenizer.batch_decode(out, skip_special_tokens=True)[0] 'Today, a dragon flew over Paris, France, killing at least 130 people. French media reported that' >>> # with a positive prompt >>> neg_inputs = tokenizer(["A very happy event happened,"], return_tensors="pt") >>> out = model.generate(inputs["input_ids"], guidance_scale=0, negative_prompt_ids=neg_inputs["input_ids"]) >>> tokenizer.batch_decode(out, skip_special_tokens=True)[0] "Today, a dragon flew over Paris, France, and I'm very happy to be here. I" ``` """ def __init__( self, guidance_scale: float, model, unconditional_ids: Optional[torch.LongTensor] = None, unconditional_attention_mask: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = True, ): self.guidance_scale = guidance_scale self.model = model self.unconditional_context = { "input_ids": unconditional_ids, "attention_mask": unconditional_attention_mask, "use_cache": use_cache, "past_key_values": None, "first_pass": True, } def get_unconditional_logits(self, input_ids): if self.unconditional_context["first_pass"]: if self.unconditional_context["input_ids"] is None: self.unconditional_context["input_ids"] = input_ids[:, -1:] if self.unconditional_context["attention_mask"] is None: self.unconditional_context["attention_mask"] = torch.ones_like( self.unconditional_context["input_ids"], dtype=torch.long ) input_ids = self.unconditional_context["input_ids"] attention_mask = self.unconditional_context["attention_mask"] self.unconditional_context["first_pass"] = False else: attention_mask = torch.cat( [ self.unconditional_context["attention_mask"], torch.ones_like(input_ids[:, -1:], dtype=torch.long), ], dim=1, ) if not self.unconditional_context["use_cache"]: input_ids = torch.cat([self.unconditional_context["input_ids"], input_ids[:, -1:]], dim=1) else: input_ids = input_ids[:, -1:] self.unconditional_context["input_ids"] = input_ids self.unconditional_context["attention_mask"] = attention_mask out = self.model( input_ids, attention_mask=attention_mask, use_cache=self.unconditional_context["use_cache"], past_key_values=self.unconditional_context["past_key_values"], ) self.unconditional_context["past_key_values"] = out.get("past_key_values", None) return out.logits def __call__(self, input_ids, scores): scores = torch.nn.functional.log_softmax(scores, dim=-1) if self.guidance_scale == 1: return scores logits = self.get_unconditional_logits(input_ids) unconditional_logits = torch.nn.functional.log_softmax(logits[:, -1], dim=-1) out = self.guidance_scale * (scores - unconditional_logits) + unconditional_logits return out class BarkEosPrioritizerLogitsProcessor(LogitsProcessor): r"""This processor ensures that the EOS token is selected if its probability is greater than the `min_eos_p`. This logits processor is exclusivelly compatible with [Bark](https://huggingface.co/docs/transformers/en/model_doc/bark). See the model documentation for examples. Args: eos_token_id (`Union[int, List[int]]`): The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens. min_eos_p (`float`, *optional*): Minimum end of speech threshold. """ def __init__(self, eos_token_id: Union[int, List[int]], min_eos_p: float): if isinstance(eos_token_id, int): eos_token_id = [eos_token_id] self.eos_token_id = eos_token_id if min_eos_p is not None and min_eos_p <= 0: raise ValueError(f"`min_eos_p` has to be a positive float, but is {min_eos_p}") self.min_eos_p = min_eos_p @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: if self.min_eos_p: probs = torch.nn.functional.softmax(scores.float(), dim=-1) # create scores full of -inf except for the eos_token_id early_stop_scores = torch.ones_like(scores) * -float("inf") early_stop_scores[:, self.eos_token_id] = scores[:, self.eos_token_id] do_early_stop = probs[:, self.eos_token_id] > self.min_eos_p scores = torch.where(do_early_stop, early_stop_scores, scores) return scores