import argparse import time from threading import Thread from PIL import Image import torch from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer import dataclasses from enum import auto, Enum from typing import List, Tuple, Any from minigpt4.common.registry import registry tokenizer = AutoTokenizer.from_pretrained('phi-2') class SeparatorStyle(Enum): """Different separator style.""" SINGLE = auto() TWO = auto() @dataclasses.dataclass class Conversation: """A class that keeps all conversation history.""" system: str roles: List[str] messages: List[List[str]] offset: int # system_img: List[Image.Image] = [] sep_style: SeparatorStyle = SeparatorStyle.SINGLE sep: str = "###" sep2: str = None skip_next: bool = False conv_id: Any = None def get_prompt(self): if self.sep_style == SeparatorStyle.SINGLE: ret = self.system + self.sep for role, message in self.messages: if message: ret += role + message + self.sep else: ret += role return ret elif self.sep_style == SeparatorStyle.TWO: seps = [self.sep, self.sep2] ret = self.system + seps[0] for i, (role, message) in enumerate(self.messages): if message: ret += role + message + seps[i % 2] else: ret += role return ret else: raise ValueError(f"Invalid style: {self.sep_style}") def append_message(self, role, message): self.messages.append([role, message]) def to_gradio_chatbot(self): ret = [] for i, (role, msg) in enumerate(self.messages[self.offset:]): if i % 2 == 0: ret.append([msg, None]) else: ret[-1][-1] = msg return ret def copy(self): return Conversation( system=self.system, # system_img=self.system_img, roles=self.roles, messages=[[x, y] for x, y in self.messages], offset=self.offset, sep_style=self.sep_style, sep=self.sep, sep2=self.sep2, conv_id=self.conv_id) def dict(self): return { "system": self.system, # "system_img": self.system_img, "roles": self.roles, "messages": self.messages, "offset": self.offset, "sep": self.sep, "sep2": self.sep2, "conv_id": self.conv_id, } class StoppingCriteriaSub(StoppingCriteria): def __init__(self, stops=[], encounters=1): super().__init__() self.stops = stops def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor): for stop in self.stops: if torch.all(input_ids[:, -len(stop):] == stop).item(): return True return False CONV_VISION = Conversation( system="Give the following image: ImageContent. " "You will be able to see the image once I provide it to you. Please answer my questions.", roles=("Human: ", "Assistant: "), messages=[], offset=2, sep_style=SeparatorStyle.SINGLE, sep="###", ) CONV_VISION_LLama2 = Conversation( system="Give the following image: ImageContent. " "You will be able to see the image once I provide it to you. Please answer my questions.", roles=("Human: ", "Assistant: "), messages=[], offset=2, sep_style=SeparatorStyle.SINGLE, sep="###", ) CONV_VISION_minigptv2 = Conversation( system="", roles=("Human: ", "Assistant: "), messages=[], offset=2, sep_style=SeparatorStyle.SINGLE, sep="###", ) class Chat: def __init__(self, model, vis_processor, device='cuda:0', stopping_criteria=None): self.device = device self.model = model self.vis_processor = vis_processor if stopping_criteria is not None: self.stopping_criteria = stopping_criteria else: stop_words_ids = [torch.tensor([2]).to(self.device)] self.stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)]) def ask(self, text, conv): if len(conv.messages) > 0 and conv.messages[-1][0] == conv.roles[0] \ and conv.messages[-1][1][-6:] == '': # last message is image. conv.messages[-1][1] = ' '.join([conv.messages[-1][1], text]) else: conv.append_message(conv.roles[0], text) def answer_prepare(self, conv, img_list, max_new_tokens=300, num_beams=1, min_length=1, top_p=0.9, repetition_penalty=1.05, length_penalty=1, temperature=1.0, max_length=2000): conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() embs = self.model.get_context_emb(prompt, img_list) current_max_len = embs.shape[1] + max_new_tokens if current_max_len - max_length > 0: print('Warning: The number of tokens in current conversation exceeds the max length. ' 'The model will not see the contexts outside the range.') begin_idx = max(0, current_max_len - max_length) embs = embs[:, begin_idx:] generation_kwargs = dict( inputs_embeds=embs, max_new_tokens=max_new_tokens, stopping_criteria=self.stopping_criteria, num_beams=num_beams, do_sample=True, min_length=min_length, top_p=top_p, repetition_penalty=repetition_penalty, length_penalty=length_penalty, temperature=float(temperature), pad_token_id=tokenizer.pad_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, ) return generation_kwargs def answer(self, conv, img_list, **kargs): generation_dict = self.answer_prepare(conv, img_list, **kargs) output_token = self.model_generate(**generation_dict)[0] output_text = self.model.llama_tokenizer.decode(output_token, skip_special_tokens=True) output_text = output_text.split('###')[0] # remove the stop sign '###' output_text = output_text.split('Assistant:')[-1].strip() conv.messages[-1][1] = output_text return output_text, output_token.cpu().numpy() def stream_answer(self, conv, img_list, **kargs): generation_kwargs = self.answer_prepare(conv, img_list, **kargs) streamer = TextIteratorStreamer(self.model.llama_tokenizer, skip_special_tokens=True) generation_kwargs['streamer'] = streamer thread = Thread(target=self.model_generate, kwargs=generation_kwargs) thread.start() return streamer generated = input_ids for _ in range(max_length): output = self.forward(input_ids=generated).logits next_word_id = output[:, -1, :].argmax(1) generated = torch.cat((generated, next_word_id.unsqueeze(-1)), dim=1) def model_generate(self, *args, **kwargs): # for 8 bit and 16 bit compatibility with self.model.maybe_autocast(): output = self.model.llama_model.generate(*args, **kwargs) return output # def model_generate(self, *args, **kwargs): # # for 8 bit and 16 bit compatibility # with self.model.maybe_autocast(): # max_length=100 # for _ in range(max_length): # output = self.model(**kwargs).logits # next_word_id = output[:, -1, :].argmax(1) # generated = torch.cat((generated, next_word_id.unsqueeze(-1)), dim=1) # return output def upload_img(self, image, conv, img_list): if isinstance(image, str): # is a image path raw_image = Image.open(image).convert('RGB') image = self.vis_processor(raw_image).unsqueeze(0).to(self.device) elif isinstance(image, Image.Image): raw_image = image image = self.vis_processor(raw_image).unsqueeze(0).to(self.device) elif isinstance(image, torch.Tensor): if len(image.shape) == 3: image = image.unsqueeze(0) image = image.to(self.device) image_emb, _ = self.model.encode_img(image) img_list.append(image_emb) conv.append_message(conv.roles[0], "") msg = "Received." # self.conv.append_message(self.conv.roles[1], msg) return msg