import os import sys from llama_index import SimpleDirectoryReader, ServiceContext, StorageContext, VectorStoreIndex, download_loader,load_index_from_storage from llama_index.llms import HuggingFaceLLM from llama_index.embeddings import HuggingFaceEmbedding from llama_index.vector_stores import ChromaVectorStore from llama_index.storage.index_store import SimpleIndexStore from llama_index.indices.query.schema import QueryBundle, QueryType import chromadb import streamlit as st import time st.set_page_config(page_title="Tesla Alert Analyzer", page_icon=":card_index_dividers:", initial_sidebar_state="expanded", layout="wide") st.title(":card_index_dividers: Tesla Alert Analyzer") st.info(""" Begin by uploading the case report in pptx format. Afterward, click on 'Process Document'. Once the document has been processed. You can enter question and click send, system will answer your question. """) if "process_doc" not in st.session_state: st.session_state.process_doc = False def fmetadata(dummy: str): return {"file_path": ""} def load_files(file_dir): PptxReader = download_loader("PptxReader") loader = SimpleDirectoryReader(input_dir=file_dir, file_extractor={".pptx": PptxReader(),}, file_metadata=fmetadata) documents = loader.load_data() for doc in documents: doc.metadata["file_path"]="" return documents system_prompt = "You are a Q&A assistant. " system_prompt += "Your goal is to answer questions as accurately as possible based on the instructions and context provided." system_prompt += "Please say you do not know if you do not find answer." # This will wrap the default prompts that are internal to llama-index query_wrapper_prompt = "<|USER|>{query_str}<|ASSISTANT|>" import torch #torch.set_default_device('cuda') @st.cache_resource def llm_loading(): print("before huggingfacellm") llm = HuggingFaceLLM( context_window=8000, max_new_tokens=500, generate_kwargs={"temperature": 0.1, "do_sample": True}, system_prompt=system_prompt, query_wrapper_prompt=query_wrapper_prompt, tokenizer_name="mistralai/Mistral-7B-Instruct-v0.1", model_name="mistralai/Mistral-7B-Instruct-v0.1", device_map="auto", tokenizer_kwargs={"max_length": 8000}, model_kwargs={"torch_dtype": torch.float16} ) print("after huggingfacellm") embed_model = HuggingFaceEmbedding(model_name="thenlper/gte-base") print("after embed_model") return llm,embed_model llm, embed_model = llm_loading() files_uploaded = st.sidebar.file_uploader("Upload the case report in PPT format", type="pptx", accept_multiple_files=True) st.sidebar.info(""" Example pptx reports you can upload here: """) if st.sidebar.button("Process Document"): with st.spinner("Processing Document..."): data_dir = "data" if not os.path.exists(data_dir): os.makedirs(data_dir) for uploaded_file in files_uploaded: print(f'file named {uploaded_file.name}') fname=f'{data_dir}/{uploaded_file.name}' with open(fname, 'wb') as f: f.write(uploaded_file.read()) documents=load_files(data_dir) collection_name = "tesla_report" chroma_client = chromadb.PersistentClient() chroma_collection = chroma_client.get_or_create_collection(collection_name) vector_store = ChromaVectorStore(chroma_collection=chroma_collection) storage_context = StorageContext.from_defaults(vector_store=vector_store) service_context = ServiceContext.from_defaults( chunk_size=8000, llm=llm, embed_model=embed_model ) index = VectorStoreIndex.from_documents(documents, service_context=service_context, storage_context=storage_context) index.storage_context.persist() #chroma_collection.peek() #st.session_state.index = index st.session_state.process_doc = True st.toast("Document Processsed!") #st.session_state.process_doc = True def clear_form(): st.session_state.query_text = st.session_state["question"] st.session_state["question"] = "" st.session_state["response"] = "" @st.cache_resource def reload_index(_llm,_embed_model, col ) : chroma_client = chromadb.PersistentClient() chroma_collection = chroma_client.get_or_create_collection(col) vector_store = ChromaVectorStore(chroma_collection=chroma_collection) service_context = ServiceContext.from_defaults(llm=llm,embed_model=embed_model) load_index = VectorStoreIndex.from_vector_store(service_context=service_context, vector_store=vector_store) return load_index if st.session_state.process_doc: #alert number looks like APP_wnnn where nnn is a number. Please list out all the alerts uploaded in these files! search_text = st.text_input("Enter your question", key='question' ) if st.button(label="Submit", on_click=clear_form): index = reload_index(llm,embed_model,"tesla_report" ) query_engine = index.as_query_engine() start_time = time.time() #qry = QueryBundle(search_text) #alert number looks like APP_wnnn where nnn is a number. Please list out all the alerts uploaded in these files!" st.write("Processing....") search_text = st.session_state.query_text print(search_text) response = query_engine.query(search_text) st.write(response.response) #st.session_state["end_time"] = "{:.2f}".format((time.time() - start_time)) st.toast("Report Analysis Complete!")