import os import streamlit as st from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader index_name = "./index.json" documents_folder = "./documents" @st.cache_resource def initialize_index(index_name, documents_folder): if os.path.exists(index_name): index = GPTSimpleVectorIndex.load_from_disk(index_name) else: documents = SimpleDirectoryReader(documents_folder).load_data() index = GPTSimpleVectorIndex.from_documents(documents) index.save_to_disk(index_name) return index @st.cache_data(max_entries=200, persist=True) def query_index(_index, query_text): response = _index.query(query_text) return str(response) st.title("🦙 Llama Index Demo 🦙") st.header("Welcome to the Llama Index Streamlit Demo") st.write("Enter a query about Paul Graham's essays. You can check out the original essay [here](https://raw.githubusercontent.com/jerryjliu/llama_index/main/examples/paul_graham_essay/data/paul_graham_essay.txt)") index = None api_key = st.text_input("Enter your OpenAI API key here:", type="password") if api_key: os.environ['OPENAI_API_KEY'] = api_key index = initialize_index(index_name, documents_folder) if index is None: st.warning("Please enter your api key first.") text = st.text_input("Query text:", value="What did the author do growing up?") if st.button("Run Query") and text is not None: response = query_index(index, text) st.markdown(response) llm_col, embed_col = st.columns(2) with llm_col: st.markdown(f"LLM Tokens Used: {index.service_context.llm_predictor._last_token_usage}") with embed_col: st.markdown(f"Embedding Tokens Used: {index.service_context.embed_model._last_token_usage}")