# Copyright 2022 Stanford University Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999): """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up to that part of the diffusion process. Args: num_diffusion_timesteps (`int`): the number of betas to produce. max_beta (`float`): the maximum beta to use; use values lower than 1 to prevent singularities. Returns: betas (`np.ndarray`): the betas used by the scheduler to step the model outputs """ def alpha_bar(time_step): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) return np.array(betas, dtype=np.float32) class DDIMScheduler(SchedulerMixin, ConfigMixin): """ Denoising diffusion implicit models is a scheduler that extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with non-Markovian guidance. [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and [`~ConfigMixin.from_config`] functios. For more details, see the original paper: https://arxiv.org/abs/2010.02502 Args: num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`): the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear`, `scaled_linear`, or `squaredcos_cap_v2`. trained_betas (`np.ndarray`, optional): TODO timestep_values (`np.ndarray`, optional): TODO clip_sample (`bool`, default `True`): option to clip predicted sample between -1 and 1 for numerical stability. set_alpha_to_one (`bool`, default `True`): if alpha for final step is 1 or the final alpha of the "non-previous" one. tensor_format (`str`): whether the scheduler expects pytorch or numpy arrays. """ @register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", trained_betas: Optional[np.ndarray] = None, timestep_values: Optional[np.ndarray] = None, clip_sample: bool = True, set_alpha_to_one: bool = True, tensor_format: str = "pt", ): if trained_betas is not None: self.betas = np.asarray(trained_betas) if beta_schedule == "linear": self.betas = np.linspace(beta_start, beta_end, num_train_timesteps, dtype=np.float32) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = np.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=np.float32) ** 2 elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule self.betas = betas_for_alpha_bar(num_train_timesteps) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") self.alphas = 1.0 - self.betas self.alphas_cumprod = np.cumprod(self.alphas, axis=0) # At every step in ddim, we are looking into the previous alphas_cumprod # For the final step, there is no previous alphas_cumprod because we are already at 0 # `set_alpha_to_one` decides whether we set this paratemer simply to one or # whether we use the final alpha of the "non-previous" one. self.final_alpha_cumprod = np.array(1.0) if set_alpha_to_one else self.alphas_cumprod[0] # setable values self.num_inference_steps = None self.timesteps = np.arange(0, num_train_timesteps)[::-1].copy() self.tensor_format = tensor_format self.set_format(tensor_format=tensor_format) def _get_variance(self, timestep, prev_timestep): alpha_prod_t = self.alphas_cumprod[timestep] alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod beta_prod_t = 1 - alpha_prod_t beta_prod_t_prev = 1 - alpha_prod_t_prev variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev) return variance def set_timesteps(self, num_inference_steps: int, offset: int = 0): """ Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. Args: num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. offset (`int`): TODO """ self.num_inference_steps = num_inference_steps self.timesteps = np.arange( 0, self.config.num_train_timesteps, self.config.num_train_timesteps // self.num_inference_steps )[::-1].copy() self.timesteps += offset self.set_format(tensor_format=self.tensor_format) def step( self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray], eta: float = 0.0, use_clipped_model_output: bool = False, generator=None, return_dict: bool = True, ) -> Union[SchedulerOutput, Tuple]: """ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise). Args: model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`torch.FloatTensor` or `np.ndarray`): current instance of sample being created by diffusion process. eta (`float`): weight of noise for added noise in diffusion step. use_clipped_model_output (`bool`): TODO generator: random number generator. return_dict (`bool`): option for returning tuple rather than SchedulerOutput class Returns: [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: [`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation ( -> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointingc to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas alpha_prod_t = self.alphas_cumprod[timestep] alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod beta_prod_t = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) # 4. Clip "predicted x_0" if self.config.clip_sample: pred_original_sample = self.clip(pred_original_sample, -1, 1) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) variance = self._get_variance(timestep, prev_timestep) std_dev_t = eta * variance ** (0.5) if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide model_output = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction if eta > 0: device = model_output.device if torch.is_tensor(model_output) else "cpu" noise = torch.randn(model_output.shape, generator=generator).to(device) variance = self._get_variance(timestep, prev_timestep) ** (0.5) * eta * noise if not torch.is_tensor(model_output): variance = variance.numpy() prev_sample = prev_sample + variance if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=prev_sample, pred_orig_sample=pred_original_sample) def add_noise( self, original_samples: Union[torch.FloatTensor, np.ndarray], noise: Union[torch.FloatTensor, np.ndarray], timesteps: Union[torch.IntTensor, np.ndarray], ) -> Union[torch.FloatTensor, np.ndarray]: sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5 sqrt_alpha_prod = self.match_shape(sqrt_alpha_prod, original_samples) sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5 sqrt_one_minus_alpha_prod = self.match_shape(sqrt_one_minus_alpha_prod, original_samples) noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __len__(self): return self.config.num_train_timesteps