import math from collections import defaultdict from typing import Optional import torch import torch.nn.functional as F from torch import nn class AttentionBlock(nn.Module): """ An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted to the N-d case. https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. Uses three q, k, v linear layers to compute attention. Parameters: channels (:obj:`int`): The number of channels in the input and output. num_head_channels (:obj:`int`, *optional*): The number of channels in each head. If None, then `num_heads` = 1. num_groups (:obj:`int`, *optional*, defaults to 32): The number of groups to use for group norm. rescale_output_factor (:obj:`float`, *optional*, defaults to 1.0): The factor to rescale the output by. eps (:obj:`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm. """ def __init__( self, channels: int, num_head_channels: Optional[int] = None, num_groups: int = 32, rescale_output_factor: float = 1.0, eps: float = 1e-5, ): super().__init__() self.channels = channels self.num_heads = channels // num_head_channels if num_head_channels is not None else 1 self.num_head_size = num_head_channels self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=eps, affine=True) # define q,k,v as linear layers self.query = nn.Linear(channels, channels) self.key = nn.Linear(channels, channels) self.value = nn.Linear(channels, channels) self.rescale_output_factor = rescale_output_factor self.proj_attn = nn.Linear(channels, channels, 1) def transpose_for_scores(self, projection: torch.Tensor) -> torch.Tensor: new_projection_shape = projection.size()[:-1] + (self.num_heads, -1) # move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D) new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3) return new_projection def forward(self, hidden_states): residual = hidden_states batch, channel, height, width = hidden_states.shape # norm hidden_states = self.group_norm(hidden_states) hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2) # proj to q, k, v query_proj = self.query(hidden_states) key_proj = self.key(hidden_states) value_proj = self.value(hidden_states) # transpose query_states = self.transpose_for_scores(query_proj) key_states = self.transpose_for_scores(key_proj) value_states = self.transpose_for_scores(value_proj) # get scores scale = 1 / math.sqrt(math.sqrt(self.channels / self.num_heads)) attention_scores = torch.matmul(query_states * scale, key_states.transpose(-1, -2) * scale) attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype) # compute attention output hidden_states = torch.matmul(attention_probs, value_states) hidden_states = hidden_states.permute(0, 2, 1, 3).contiguous() new_hidden_states_shape = hidden_states.size()[:-2] + (self.channels,) hidden_states = hidden_states.view(new_hidden_states_shape) # compute next hidden_states hidden_states = self.proj_attn(hidden_states) hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width) # res connect and rescale hidden_states = (hidden_states + residual) / self.rescale_output_factor return hidden_states class SpatialTransformer(nn.Module): """ Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply standard transformer action. Finally, reshape to image. Parameters: in_channels (:obj:`int`): The number of channels in the input and output. n_heads (:obj:`int`): The number of heads to use for multi-head attention. d_head (:obj:`int`): The number of channels in each head. depth (:obj:`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. dropout (:obj:`float`, *optional*, defaults to 0.1): The dropout probability to use. context_dim (:obj:`int`, *optional*): The number of context dimensions to use. """ def __init__( self, in_channels: int, n_heads: int, d_head: int, depth: int = 1, dropout: float = 0.0, context_dim: Optional[int] = None, ): super().__init__() self.n_heads = n_heads self.d_head = d_head self.in_channels = in_channels inner_dim = n_heads * d_head self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim) for d in range(depth) ] ) self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) def _set_attention_slice(self, slice_size): for block in self.transformer_blocks: block._set_attention_slice(slice_size) def forward(self, x, context=None): # note: if no context is given, cross-attention defaults to self-attention b, c, h, w = x.shape x_in = x x = self.norm(x) x = self.proj_in(x) x = x.permute(0, 2, 3, 1).reshape(b, h * w, c) for block in self.transformer_blocks: x = block(x, context=context) x = x.reshape(b, h, w, c).permute(0, 3, 1, 2) x = self.proj_out(x) return x + x_in class BasicTransformerBlock(nn.Module): r""" A basic Transformer block. Parameters: dim (:obj:`int`): The number of channels in the input and output. n_heads (:obj:`int`): The number of heads to use for multi-head attention. d_head (:obj:`int`): The number of channels in each head. dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use. context_dim (:obj:`int`, *optional*): The size of the context vector for cross attention. gated_ff (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use a gated feed-forward network. checkpoint (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use checkpointing. """ def __init__( self, dim: int, n_heads: int, d_head: int, dropout=0.0, context_dim: Optional[int] = None, gated_ff: bool = True, checkpoint: bool = True, ): super().__init__() self.attn1 = CrossAttention( query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout ) # is a self-attention self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) self.attn2 = CrossAttention( query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout ) # is self-attn if context is none self.norm1 = nn.LayerNorm(dim) self.norm2 = nn.LayerNorm(dim) self.norm3 = nn.LayerNorm(dim) self.checkpoint = checkpoint def _set_attention_slice(self, slice_size): self.attn1._slice_size = slice_size self.attn2._slice_size = slice_size def forward(self, x, context=None): x = x.contiguous() if x.device.type == "mps" else x x = self.attn1(self.norm1(x)) + x x = self.attn2(self.norm2(x), context=context) + x x = self.ff(self.norm3(x)) + x return x heat_maps = defaultdict(list) all_heat_maps = [] def clear_heat_maps(): global heat_maps, all_heat_maps heat_maps = defaultdict(list) all_heat_maps = [] def next_heat_map(): global heat_maps, all_heat_maps all_heat_maps.append(heat_maps) heat_maps = defaultdict(list) def get_global_heat_map(last_n: int = None, idx: int = None, factors=None): global heat_maps, all_heat_maps if idx is not None: heat_maps2 = [all_heat_maps[idx]] else: heat_maps2 = all_heat_maps[-last_n:] if last_n is not None else all_heat_maps if factors is None: factors = {1, 2, 4, 8, 16, 32} all_merges = [] for heat_map_map in heat_maps2: merge_list = [] for k, v in heat_map_map.items(): if k in factors: merge_list.append(torch.stack(v, 0).mean(0)) all_merges.append(merge_list) maps = torch.stack([torch.stack(x, 0) for x in all_merges], dim=0) return maps.sum(0).cuda().sum(2).sum(0) class CrossAttention(nn.Module): r""" A cross attention layer. Parameters: query_dim (:obj:`int`): The number of channels in the query. context_dim (:obj:`int`, *optional*): The number of channels in the context. If not given, defaults to `query_dim`. heads (:obj:`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. dim_head (:obj:`int`, *optional*, defaults to 64): The number of channels in each head. dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use. """ def __init__( self, query_dim: int, context_dim: Optional[int] = None, heads: int = 8, dim_head: int = 64, dropout: int = 0.0 ): super().__init__() inner_dim = dim_head * heads context_dim = context_dim if context_dim is not None else query_dim self.scale = dim_head**-0.5 self.heads = heads # for slice_size > 0 the attention score computation # is split across the batch axis to save memory # You can set slice_size with `set_attention_slice` self._slice_size = None self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)) def reshape_heads_to_batch_dim(self, tensor): batch_size, seq_len, dim = tensor.shape head_size = self.heads tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) return tensor def reshape_batch_dim_to_heads(self, tensor): batch_size, seq_len, dim = tensor.shape head_size = self.heads tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) return tensor def forward(self, x, context=None, mask=None): batch_size, sequence_length, dim = x.shape use_context = context is not None q = self.to_q(x) context = context if context is not None else x k = self.to_k(context) v = self.to_v(context) q = self.reshape_heads_to_batch_dim(q) k = self.reshape_heads_to_batch_dim(k) v = self.reshape_heads_to_batch_dim(v) # TODO(PVP) - mask is currently never used. Remember to re-implement when used # attention, what we cannot get enough of hidden_states = self._attention(q, k, v, sequence_length, dim, use_context=use_context) return self.to_out(hidden_states) @torch.no_grad() def _up_sample_attn(self, x, factor, method: str = 'bicubic'): weight = torch.full((factor, factor), 1 / factor**2, device=x.device) weight = weight.view(1, 1, factor, factor) h = w = int(math.sqrt(x.size(1))) maps = [] x = x.permute(2, 0, 1) with torch.cuda.amp.autocast(dtype=torch.float32): for map_ in x: map_ = map_.unsqueeze(1).view(map_.size(0), 1, h, w) if method == 'bicubic': map_ = F.interpolate(map_, size=(55, 55), mode="bicubic", align_corners=False) maps.append(map_.squeeze(1)) else: maps.append(F.conv_transpose2d(map_, weight, stride=factor).squeeze(1).cpu()) maps = torch.stack(maps, 0).cpu() return maps def _attention(self, query, key, value, sequence_length, dim, use_context: bool = True): batch_size_attention = query.shape[0] hidden_states = torch.zeros( (batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype ) slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0] for i in range(hidden_states.shape[0] // slice_size): start_idx = i * slice_size end_idx = (i + 1) * slice_size attn_slice = ( torch.einsum("b i d, b j d -> b i j", query[start_idx:end_idx], key[start_idx:end_idx]) * self.scale ) factor = int(math.sqrt(4096 // attn_slice.shape[1])) attn_slice = attn_slice.softmax(-1) if use_context: if factor >= 1: factor //= 1 maps = self._up_sample_attn(attn_slice, factor) global heat_maps heat_maps[factor].append(maps) # print(attn_slice.size(), query.size(), key.size(), value.size()) attn_slice = torch.einsum("b i j, b j d -> b i d", attn_slice, value[start_idx:end_idx]) hidden_states[start_idx:end_idx] = attn_slice # reshape hidden_states hidden_states = self.reshape_batch_dim_to_heads(hidden_states) return hidden_states class FeedForward(nn.Module): r""" A feed-forward layer. Parameters: dim (:obj:`int`): The number of channels in the input. dim_out (:obj:`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. mult (:obj:`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. glu (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use GLU activation. dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use. """ def __init__( self, dim: int, dim_out: Optional[int] = None, mult: int = 4, glu: bool = False, dropout: float = 0.0 ): super().__init__() inner_dim = int(dim * mult) dim_out = dim_out if dim_out is not None else dim project_in = GEGLU(dim, inner_dim) self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)) def forward(self, x): return self.net(x) # feedforward class GEGLU(nn.Module): r""" A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202. Parameters: dim_in (:obj:`int`): The number of channels in the input. dim_out (:obj:`int`): The number of channels in the output. """ def __init__(self, dim_in: int, dim_out: int): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2) def forward(self, x): x, gate = self.proj(x).chunk(2, dim=-1) return x * F.gelu(gate)