# Copyright (c) OpenMMLab. All rights reserved. from typing import List, Optional, Union import torch from mmengine.model import BaseModule from mmpretrain.registry import MODELS @MODELS.register_module() class ContrastiveHead(BaseModule): """Head for contrastive learning. The contrastive loss is implemented in this head and is used in SimCLR, MoCo, DenseCL, etc. Args: loss (dict): Config dict for module of loss functions. temperature (float): The temperature hyper-parameter that controls the concentration level of the distribution. Defaults to 0.1. init_cfg (dict or List[dict], optional): Initialization config dict. Defaults to None. """ def __init__(self, loss: dict, temperature: float = 0.1, init_cfg: Optional[Union[dict, List[dict]]] = None) -> None: super().__init__(init_cfg=init_cfg) self.loss_module = MODELS.build(loss) self.temperature = temperature def loss(self, pos: torch.Tensor, neg: torch.Tensor) -> torch.Tensor: """Forward function to compute contrastive loss. Args: pos (torch.Tensor): Nx1 positive similarity. neg (torch.Tensor): Nxk negative similarity. Returns: torch.Tensor: The contrastive loss. """ N = pos.size(0) logits = torch.cat((pos, neg), dim=1) logits /= self.temperature labels = torch.zeros((N, ), dtype=torch.long).to(pos.device) loss = self.loss_module(logits, labels) return loss