# Copyright (c) OpenMMLab. All rights reserved. from typing import Sequence import torch import torch.nn as nn from mmcv.cnn.bricks import DropPath, build_norm_layer from mmengine.model import BaseModule from mmpretrain.registry import MODELS from .base_backbone import BaseBackbone from .poolformer import Mlp, PatchEmbed class Affine(nn.Module): """Affine Transformation module. Args: in_features (int): Input dimension. """ def __init__(self, in_features): super().__init__() self.affine = nn.Conv2d( in_features, in_features, kernel_size=1, stride=1, padding=0, groups=in_features, bias=True) def forward(self, x): return self.affine(x) - x class RIFormerBlock(BaseModule): """RIFormer Block. Args: dim (int): Embedding dim. mlp_ratio (float): Mlp expansion ratio. Defaults to 4. norm_cfg (dict): The config dict for norm layers. Defaults to ``dict(type='GN', num_groups=1)``. act_cfg (dict): The config dict for activation between pointwise convolution. Defaults to ``dict(type='GELU')``. drop (float): Dropout rate. Defaults to 0. drop_path (float): Stochastic depth rate. Defaults to 0. layer_scale_init_value (float): Init value for Layer Scale. Defaults to 1e-5. deploy (bool): Whether to switch the model structure to deployment mode. Default: False. """ def __init__(self, dim, mlp_ratio=4., norm_cfg=dict(type='GN', num_groups=1), act_cfg=dict(type='GELU'), drop=0., drop_path=0., layer_scale_init_value=1e-5, deploy=False): super().__init__() if deploy: self.norm_reparam = build_norm_layer(norm_cfg, dim)[1] else: self.norm1 = build_norm_layer(norm_cfg, dim)[1] self.token_mixer = Affine(in_features=dim) self.norm2 = build_norm_layer(norm_cfg, dim)[1] mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_cfg=act_cfg, drop=drop) # The following two techniques are useful to train deep RIFormers. self.drop_path = DropPath(drop_path) if drop_path > 0. \ else nn.Identity() self.layer_scale_1 = nn.Parameter( layer_scale_init_value * torch.ones((dim)), requires_grad=True) self.layer_scale_2 = nn.Parameter( layer_scale_init_value * torch.ones((dim)), requires_grad=True) self.norm_cfg = norm_cfg self.dim = dim self.deploy = deploy def forward(self, x): if hasattr(self, 'norm_reparam'): x = x + self.drop_path( self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * self.norm_reparam(x)) x = x + self.drop_path( self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * self.mlp(self.norm2(x))) else: x = x + self.drop_path( self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * self.token_mixer(self.norm1(x))) x = x + self.drop_path( self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * self.mlp(self.norm2(x))) return x def fuse_affine(self, norm, token_mixer): gamma_affn = token_mixer.affine.weight.reshape(-1) gamma_affn = gamma_affn - torch.ones_like(gamma_affn) beta_affn = token_mixer.affine.bias gamma_ln = norm.weight beta_ln = norm.bias return (gamma_ln * gamma_affn), (beta_ln * gamma_affn + beta_affn) def get_equivalent_scale_bias(self): eq_s, eq_b = self.fuse_affine(self.norm1, self.token_mixer) return eq_s, eq_b def switch_to_deploy(self): if self.deploy: return eq_s, eq_b = self.get_equivalent_scale_bias() self.norm_reparam = build_norm_layer(self.norm_cfg, self.dim)[1] self.norm_reparam.weight.data = eq_s self.norm_reparam.bias.data = eq_b self.__delattr__('norm1') if hasattr(self, 'token_mixer'): self.__delattr__('token_mixer') self.deploy = True def basic_blocks(dim, index, layers, mlp_ratio=4., norm_cfg=dict(type='GN', num_groups=1), act_cfg=dict(type='GELU'), drop_rate=.0, drop_path_rate=0., layer_scale_init_value=1e-5, deploy=False): """generate RIFormer blocks for a stage.""" blocks = [] for block_idx in range(layers[index]): block_dpr = drop_path_rate * (block_idx + sum(layers[:index])) / ( sum(layers) - 1) blocks.append( RIFormerBlock( dim, mlp_ratio=mlp_ratio, norm_cfg=norm_cfg, act_cfg=act_cfg, drop=drop_rate, drop_path=block_dpr, layer_scale_init_value=layer_scale_init_value, deploy=deploy, )) blocks = nn.Sequential(*blocks) return blocks @MODELS.register_module() class RIFormer(BaseBackbone): """RIFormer. A PyTorch implementation of RIFormer introduced by: `RIFormer: Keep Your Vision Backbone Effective But Removing Token Mixer `_ Args: arch (str | dict): The model's architecture. If string, it should be one of architecture in ``RIFormer.arch_settings``. And if dict, it should include the following two keys: - layers (list[int]): Number of blocks at each stage. - embed_dims (list[int]): The number of channels at each stage. - mlp_ratios (list[int]): Expansion ratio of MLPs. - layer_scale_init_value (float): Init value for Layer Scale. Defaults to 'S12'. norm_cfg (dict): The config dict for norm layers. Defaults to ``dict(type='LN2d', eps=1e-6)``. act_cfg (dict): The config dict for activation between pointwise convolution. Defaults to ``dict(type='GELU')``. in_patch_size (int): The patch size of/? input image patch embedding. Defaults to 7. in_stride (int): The stride of input image patch embedding. Defaults to 4. in_pad (int): The padding of input image patch embedding. Defaults to 2. down_patch_size (int): The patch size of downsampling patch embedding. Defaults to 3. down_stride (int): The stride of downsampling patch embedding. Defaults to 2. down_pad (int): The padding of downsampling patch embedding. Defaults to 1. drop_rate (float): Dropout rate. Defaults to 0. drop_path_rate (float): Stochastic depth rate. Defaults to 0. out_indices (Sequence | int): Output from which network position. Index 0-6 respectively corresponds to [stage1, downsampling, stage2, downsampling, stage3, downsampling, stage4] Defaults to -1, means the last stage. frozen_stages (int): Stages to be frozen (all param fixed). Defaults to -1, which means not freezing any parameters. deploy (bool): Whether to switch the model structure to deployment mode. Default: False. init_cfg (dict, optional): Initialization config dict """ # noqa: E501 # --layers: [x,x,x,x], numbers of layers for the four stages # --embed_dims, --mlp_ratios: # embedding dims and mlp ratios for the four stages # --downsamples: flags to apply downsampling or not in four blocks arch_settings = { 's12': { 'layers': [2, 2, 6, 2], 'embed_dims': [64, 128, 320, 512], 'mlp_ratios': [4, 4, 4, 4], 'layer_scale_init_value': 1e-5, }, 's24': { 'layers': [4, 4, 12, 4], 'embed_dims': [64, 128, 320, 512], 'mlp_ratios': [4, 4, 4, 4], 'layer_scale_init_value': 1e-5, }, 's36': { 'layers': [6, 6, 18, 6], 'embed_dims': [64, 128, 320, 512], 'mlp_ratios': [4, 4, 4, 4], 'layer_scale_init_value': 1e-6, }, 'm36': { 'layers': [6, 6, 18, 6], 'embed_dims': [96, 192, 384, 768], 'mlp_ratios': [4, 4, 4, 4], 'layer_scale_init_value': 1e-6, }, 'm48': { 'layers': [8, 8, 24, 8], 'embed_dims': [96, 192, 384, 768], 'mlp_ratios': [4, 4, 4, 4], 'layer_scale_init_value': 1e-6, }, } def __init__(self, arch='s12', in_channels=3, norm_cfg=dict(type='GN', num_groups=1), act_cfg=dict(type='GELU'), in_patch_size=7, in_stride=4, in_pad=2, down_patch_size=3, down_stride=2, down_pad=1, drop_rate=0., drop_path_rate=0., out_indices=-1, frozen_stages=-1, init_cfg=None, deploy=False): super().__init__(init_cfg=init_cfg) if isinstance(arch, str): assert arch in self.arch_settings, \ f'Unavailable arch, please choose from ' \ f'({set(self.arch_settings)}) or pass a dict.' arch = self.arch_settings[arch] elif isinstance(arch, dict): assert 'layers' in arch and 'embed_dims' in arch, \ f'The arch dict must have "layers" and "embed_dims", ' \ f'but got {list(arch.keys())}.' layers = arch['layers'] embed_dims = arch['embed_dims'] mlp_ratios = arch['mlp_ratios'] \ if 'mlp_ratios' in arch else [4, 4, 4, 4] layer_scale_init_value = arch['layer_scale_init_value'] \ if 'layer_scale_init_value' in arch else 1e-5 self.patch_embed = PatchEmbed( patch_size=in_patch_size, stride=in_stride, padding=in_pad, in_chans=in_channels, embed_dim=embed_dims[0]) # set the main block in network network = [] for i in range(len(layers)): stage = basic_blocks( embed_dims[i], i, layers, mlp_ratio=mlp_ratios[i], norm_cfg=norm_cfg, act_cfg=act_cfg, drop_rate=drop_rate, drop_path_rate=drop_path_rate, layer_scale_init_value=layer_scale_init_value, deploy=deploy) network.append(stage) if i >= len(layers) - 1: break if embed_dims[i] != embed_dims[i + 1]: # downsampling between two stages network.append( PatchEmbed( patch_size=down_patch_size, stride=down_stride, padding=down_pad, in_chans=embed_dims[i], embed_dim=embed_dims[i + 1])) self.network = nn.ModuleList(network) if isinstance(out_indices, int): out_indices = [out_indices] assert isinstance(out_indices, Sequence), \ f'"out_indices" must by a sequence or int, ' \ f'get {type(out_indices)} instead.' for i, index in enumerate(out_indices): if index < 0: out_indices[i] = 7 + index assert out_indices[i] >= 0, f'Invalid out_indices {index}' self.out_indices = out_indices if self.out_indices: for i_layer in self.out_indices: layer = build_norm_layer(norm_cfg, embed_dims[(i_layer + 1) // 2])[1] layer_name = f'norm{i_layer}' self.add_module(layer_name, layer) self.frozen_stages = frozen_stages self._freeze_stages() self.deploy = deploy def forward_embeddings(self, x): x = self.patch_embed(x) return x def forward_tokens(self, x): outs = [] for idx, block in enumerate(self.network): x = block(x) if idx in self.out_indices: norm_layer = getattr(self, f'norm{idx}') x_out = norm_layer(x) outs.append(x_out) return tuple(outs) def forward(self, x): # input embedding x = self.forward_embeddings(x) # through backbone x = self.forward_tokens(x) return x def _freeze_stages(self): if self.frozen_stages >= 0: self.patch_embed.eval() for param in self.patch_embed.parameters(): param.requires_grad = False for i in range(0, self.frozen_stages + 1): # Include both block and downsample layer. module = self.network[i] module.eval() for param in module.parameters(): param.requires_grad = False if i in self.out_indices: norm_layer = getattr(self, f'norm{i}') norm_layer.eval() for param in norm_layer.parameters(): param.requires_grad = False def train(self, mode=True): super(RIFormer, self).train(mode) self._freeze_stages() return self def switch_to_deploy(self): for m in self.modules(): if isinstance(m, RIFormerBlock): m.switch_to_deploy() self.deploy = True