import json import logging import math import os import time import numpy as np import torch import torch.nn.functional as F from torch.nn.parallel.distributed import DistributedDataParallel try: import wandb except ImportError: wandb = None from open_clip import get_cast_dtype, CLIP, CustomTextCLIP from .distributed import is_master from .zero_shot import zero_shot_eval from .precision import get_autocast class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def postprocess_clip_output(model_out): return { "image_features": model_out[0], "text_features": model_out[1], "logit_scale": model_out[2] } def unwrap_model(model): if hasattr(model, 'module'): return model.module else: return model def backward(total_loss, scaler): if scaler is not None: scaler.scale(total_loss).backward() else: total_loss.backward() def train_one_epoch(model, data, loss, epoch, optimizer, scaler, scheduler, dist_model, args, tb_writer=None): device = torch.device(args.device) autocast = get_autocast(args.precision) cast_dtype = get_cast_dtype(args.precision) model.train() if args.distill: dist_model.eval() data['train'].set_epoch(epoch) # set epoch in process safe manner via sampler or shared_epoch dataloader = data['train'].dataloader num_batches_per_epoch = dataloader.num_batches // args.accum_freq sample_digits = math.ceil(math.log(dataloader.num_samples + 1, 10)) if args.accum_freq > 1: accum_images, accum_texts, accum_features = [], [], {} losses_m = {} batch_time_m = AverageMeter() data_time_m = AverageMeter() end = time.time() for i, batch in enumerate(dataloader): i_accum = i // args.accum_freq step = num_batches_per_epoch * epoch + i_accum if not args.skip_scheduler: scheduler(step) images, texts = batch images = images.to(device=device, dtype=cast_dtype, non_blocking=True) texts = texts.to(device=device, non_blocking=True) data_time_m.update(time.time() - end) optimizer.zero_grad() if args.accum_freq == 1: with autocast(): model_out = model(images, texts) logit_scale = model_out["logit_scale"] if args.distill: with torch.no_grad(): dist_model_out = dist_model(images, texts) model_out.update({f'dist_{k}' : v for k, v in dist_model_out.items()}) losses = loss(**model_out, output_dict=True) total_loss = sum(losses.values()) losses["loss"] = total_loss backward(total_loss, scaler) else: # First, cache the features without any gradient tracking. with torch.no_grad(): with autocast(): model_out = model(images, texts) model_out.pop("logit_scale") for key, val in model_out.items(): if key in accum_features: accum_features[key].append(val) else: accum_features[key] = [val] accum_images.append(images) accum_texts.append(texts) # If (i + 1) % accum_freq is not zero, move on to the next batch. if ((i + 1) % args.accum_freq) > 0: # FIXME this makes data time logging unreliable when accumulating continue # Now, ready to take gradients for the last accum_freq batches. # Re-do the forward pass for those batches, and use the cached features from the other batches as negatives. # Call backwards each time, but only step optimizer at the end. optimizer.zero_grad() for j in range(args.accum_freq): images = accum_images[j] texts = accum_texts[j] with autocast(): model_out = model(images, texts) logit_scale = model_out.pop("logit_scale") inputs = {} for key, val in accum_features.items(): accumulated = accum_features[key] inputs[key] = torch.cat(accumulated[:j] + [model_out[key]] + accumulated[j + 1:]) losses = loss(**inputs, logit_scale=logit_scale, output_dict=True) del inputs total_loss = sum(losses.values()) losses["loss"] = total_loss backward(total_loss, scaler) if scaler is not None: if args.horovod: optimizer.synchronize() scaler.unscale_(optimizer) if args.grad_clip_norm is not None: torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip_norm, norm_type=2.0) with optimizer.skip_synchronize(): scaler.step(optimizer) else: if args.grad_clip_norm is not None: scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip_norm, norm_type=2.0) scaler.step(optimizer) scaler.update() else: if args.grad_clip_norm is not None: torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip_norm, norm_type=2.0) optimizer.step() # reset gradient accum, if enabled if args.accum_freq > 1: accum_images, accum_texts, accum_features = [], [], {} # Note: we clamp to 4.6052 = ln(100), as in the original paper. with torch.no_grad(): unwrap_model(model).logit_scale.clamp_(0, math.log(100)) batch_time_m.update(time.time() - end) end = time.time() batch_count = i_accum + 1 if is_master(args) and (i_accum % args.log_every_n_steps == 0 or batch_count == num_batches_per_epoch): batch_size = len(images) num_samples = batch_count * batch_size * args.accum_freq * args.world_size samples_per_epoch = dataloader.num_samples percent_complete = 100.0 * batch_count / num_batches_per_epoch # NOTE loss is coarsely sampled, just master node and per log update for key, val in losses.items(): if key not in losses_m: losses_m[key] = AverageMeter() losses_m[key].update(val.item(), batch_size) logit_scale_scalar = logit_scale.item() loss_log = " ".join( [ f"{loss_name.capitalize()}: {loss_m.val:#.5g} ({loss_m.avg:#.5g})" for loss_name, loss_m in losses_m.items() ] ) samples_per_second = args.accum_freq * args.batch_size * args.world_size / batch_time_m.val samples_per_second_per_gpu = args.accum_freq * args.batch_size / batch_time_m.val logging.info( f"Train Epoch: {epoch} [{num_samples:>{sample_digits}}/{samples_per_epoch} ({percent_complete:.0f}%)] " f"Data (t): {data_time_m.avg:.3f} " f"Batch (t): {batch_time_m.avg:.3f}, {samples_per_second:#g}/s, {samples_per_second_per_gpu:#g}/s/gpu " f"LR: {optimizer.param_groups[0]['lr']:5f} " f"Logit Scale: {logit_scale_scalar:.3f} " + loss_log ) # Save train loss / etc. Using non avg meter values as loggers have their own smoothing log_data = { "data_time": data_time_m.val, "batch_time": batch_time_m.val, "samples_per_second": samples_per_second, "samples_per_second_per_gpu": samples_per_second_per_gpu, "scale": logit_scale_scalar, "lr": optimizer.param_groups[0]["lr"] } log_data.update({name:val.val for name,val in losses_m.items()}) for name, val in log_data.items(): name = "train/" + name if tb_writer is not None: tb_writer.add_scalar(name, val, step) if args.wandb: assert wandb is not None, 'Please install wandb.' wandb.log({name: val, 'step': step}) # resetting batch / data time meters per log window batch_time_m.reset() data_time_m.reset() # end for def evaluate(model, data, epoch, args, tb_writer=None): metrics = {} if not is_master(args): return metrics device = torch.device(args.device) model.eval() zero_shot_metrics = zero_shot_eval(model, data, epoch, args) metrics.update(zero_shot_metrics) autocast = get_autocast(args.precision) cast_dtype = get_cast_dtype(args.precision) if 'val' in data and (args.val_frequency and ((epoch % args.val_frequency) == 0 or epoch == args.epochs)): dataloader = data['val'].dataloader num_samples = 0 samples_per_val = dataloader.num_samples # FIXME this does not scale past small eval datasets # all_image_features @ all_text_features will blow up memory and compute very quickly cumulative_loss = 0.0 cumulative_gen_loss = 0.0 all_image_features, all_text_features = [], [] with torch.no_grad(): for i, batch in enumerate(dataloader): images, texts = batch images = images.to(device=device, dtype=cast_dtype, non_blocking=True) texts = texts.to(device=device, non_blocking=True) with autocast(): model_out = model(images, texts) image_features = model_out["image_features"] text_features = model_out["text_features"] logit_scale = model_out["logit_scale"] # features are accumulated in CPU tensors, otherwise GPU memory exhausted quickly # however, system RAM is easily exceeded and compute time becomes problematic all_image_features.append(image_features.cpu()) all_text_features.append(text_features.cpu()) logit_scale = logit_scale.mean() logits_per_image = logit_scale * image_features @ text_features.t() logits_per_text = logits_per_image.t() batch_size = images.shape[0] labels = torch.arange(batch_size, device=device).long() total_loss = ( F.cross_entropy(logits_per_image, labels) + F.cross_entropy(logits_per_text, labels) ) / 2 gen_loss = maybe_compute_generative_loss(model_out) cumulative_loss += total_loss * batch_size num_samples += batch_size if is_master(args) and (i % 100) == 0: logging.info( f"Eval Epoch: {epoch} [{num_samples} / {samples_per_val}]\t" f"Clip Loss: {cumulative_loss / num_samples:.6f}\t") if gen_loss is not None: cumulative_gen_loss += gen_loss * batch_size logging.info( f"Generative Loss: {cumulative_gen_loss / num_samples:.6f}\t") val_metrics = get_clip_metrics( image_features=torch.cat(all_image_features), text_features=torch.cat(all_text_features), logit_scale=logit_scale.cpu(), ) loss = cumulative_loss / num_samples metrics.update( {**val_metrics, "clip_val_loss": loss.item(), "epoch": epoch, "num_samples": num_samples} ) if gen_loss is not None: gen_loss = cumulative_gen_loss / num_samples metrics.update({"val_generative_loss": gen_loss.item()}) if not metrics: return metrics logging.info( f"Eval Epoch: {epoch} " + "\t".join([f"{k}: {round(v, 4):.4f}" for k, v in metrics.items()]) ) if args.save_logs: for name, val in metrics.items(): if tb_writer is not None: tb_writer.add_scalar(f"val/{name}", val, epoch) with open(os.path.join(args.checkpoint_path, "results.jsonl"), "a+") as f: f.write(json.dumps(metrics)) f.write("\n") if args.wandb: assert wandb is not None, 'Please install wandb.' for name, val in metrics.items(): wandb.log({f"val/{name}": val, 'epoch': epoch}) return metrics def get_clip_metrics(image_features, text_features, logit_scale): metrics = {} logits_per_image = (logit_scale * image_features @ text_features.t()).detach().cpu() logits_per_text = logits_per_image.t().detach().cpu() logits = {"image_to_text": logits_per_image, "text_to_image": logits_per_text} ground_truth = torch.arange(len(text_features)).view(-1, 1) for name, logit in logits.items(): ranking = torch.argsort(logit, descending=True) preds = torch.where(ranking == ground_truth)[1] preds = preds.detach().cpu().numpy() metrics[f"{name}_mean_rank"] = preds.mean() + 1 metrics[f"{name}_median_rank"] = np.floor(np.median(preds)) + 1 for k in [1, 5, 10]: metrics[f"{name}_R@{k}"] = np.mean(preds < k) return metrics def maybe_compute_generative_loss(model_out): if "logits" in model_out and "labels" in model_out: token_logits = model_out["logits"] token_labels = model_out["labels"] return F.cross_entropy(token_logits.permute(0, 2, 1), token_labels)