import gradio as gr import open_clip import numpy as np import torch import pandas as pd import os open_clip_model, _, preprocess = open_clip.create_model_and_transforms( 'ViT-B-32', pretrained='./open_clip_pytorch_model.bin') debiased_model, _, _ = open_clip.create_model_and_transforms( 'ViT-B-32', pretrained='./debiased_openclip.pt') open_clip_model.eval() debiased_model.eval() tokenizer = open_clip.get_tokenizer('ViT-B-32') def get_clip_scores(images, candidates, w=1): images = images / np.sqrt(np.sum(images**2, axis=1, keepdims=True)) candidates = candidates / np.sqrt(np.sum(candidates**2, axis=1, keepdims=True)) per = w*np.clip(np.sum(images * candidates, axis=1), 0, None) return per def predict(text1, text2, input_img): with torch.no_grad(): image = preprocess(input_img) image= image.unsqueeze(0) image_features = open_clip_model.encode_image(image) debiased_image_features = debiased_model.encode_image(image) texts = tokenizer([text1]) texts2 = tokenizer([text2]) text_features = open_clip_model.encode_text(texts) debiased_text_features = debiased_model.encode_text(texts) # print(image_features.size(), text_features.size()) # print(debiased_image_features.size(), debiased_text_features.size()) score = get_clip_scores(image_features.numpy(), text_features.numpy()) debiased_score = get_clip_scores(debiased_image_features.numpy(), debiased_text_features.numpy()) text_features2 = open_clip_model.encode_text(texts2) debiased_text_features2 = debiased_model.encode_text(texts2) score2 = get_clip_scores(image_features.numpy(), text_features2.numpy()) debiased_score2 = get_clip_scores(debiased_image_features.numpy(), debiased_text_features2.numpy()) print(score, score2) data = {'label': ["OpenCLIP for text1", "Debiased CLIP for text1", "OpenCLIP for text2", "Debiased CLIP for text2" ], 'score': [score[0], debiased_score[0], score2[0], debiased_score2[0]] } print(pd.DataFrame.from_dict(data)) return pd.DataFrame.from_dict(data) # gradio_app = gr.Interface( # predict, # inputs=["text", "text", # gr.Image(label="Select Image", sources=['upload', 'webcam'], type="pil"), # ], # outputs=gr.BarPlot(x="label", # y="score", # title="CLIP Score and Debiased Score", # vertical=False, # x_title=None # ), # title="Parrot Bias in CLIP!! (Both CLIP models are ViT-B-32)", # ) with gr.Blocks() as demo: gr.Markdown("# Parrot Bias in CLIP!! (Both CLIP models are ViT-B-32)") with gr.Row(): im = gr.Image(label="Select Image", sources=['upload', 'webcam'], type="pil", height=450) with gr.Row(): txt_1 = gr.Textbox(label="Input Text") txt_2 = gr.Textbox(label="Input Text 2") bar = gr.BarPlot(x="label", y="score", title="CLIP Score and Debiased Score", vertical=False, x_title=None) btn = gr.Button(value="Submit") btn.click(predict, inputs=[txt_1, txt_2, im], outputs=[bar]) gr.Markdown("## Examples (from https://joaanna.github.io/disentangling_spelling_in_clip/)") gr.Examples( [["A mug cup", "An iPad",os.path.join(os.path.dirname(__file__), "examples/IMG_2938.jpg")], ["A hat", "bad",os.path.join(os.path.dirname(__file__), "examples/IMG_3066.jpg")]], [txt_1, txt_2, im], fn=predict, outputs=bar, cache_examples=True, ) if __name__ == "__main__": demo.launch(show_api=False,share=True)