import gradio as gr from huggingface_hub import InferenceClient from langchain_community.chat_models import ChatOllama from langchain_core.prompts import ChatPromptTemplate from langchain_core.output_parsers import StrOutputParser """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, model_name="llama3-8b", api_key=None ): client = ChatOllama( model=model_name, base_url="https://lintasmediadanawa-hf-llm-api.hf.space", headers={"Authorization": f"Bearer {api_key}"}, temperature=temperature, # top_p=top_p, # max_tokens=max_tokens ) messages = [("system", system_message)] for val in history: if val[0]: # messages.append({"role": "user", "content": val[0]}) messages.append(("human", val[0])) if val[1]: # messages.append({"role": "assistant", "content": val[1]}) messages.append(("ai", val[1])) # messages.append({"role": "user", "content": message}) messages.append(("user", "{input}")) chain = ChatPromptTemplate.from_messages(messages) | client | StrOutputParser() return chain.invoke({'input':message}) # response = "" # for message in client.chat_completion( # messages, # max_tokens=max_tokens, # stream=True, # temperature=temperature, # top_p=top_p, # ): # token = message.choices[0].delta.content # response += token # yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), gr.Textbox(value="llama3-8b", label="Available Model Name, please refer to https://lintasmediadanawa-hf-llm-api.hf.space/api/tags"), gr.Textbox(value="hf_xxx", label="Huggingface API key") ], ) if __name__ == "__main__": demo.launch()