import gradio as gr import tensorflow as tf import numpy as np from PIL import Image model_path = "p_inference_fruits/Xeption_fruits.keras" model = tf.keras.models.load_model(model_path) # Define the core prediction function def predict_fruit(image): # Preprocess image print(type(image)) image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image image = image.resize((150, 150)) #resize the image to 28x28 and converts it to gray scale image = np.array(image) image = np.expand_dims(image, axis=0) # same as image[None, ...] # Predict prediction = model.predict(image) # No need to apply sigmoid, as the output layer already uses softmax # Convert the probabilities to rounded values prediction = np.round(prediction, 3) # Separate the probabilities for each class p_apple = prediction[0][0] # Probability for class 'articuno' p_banana = prediction[0][1] # Probability for class 'moltres' p_pinenapple = prediction[0][2] # Probability for class 'zapdos' p_strawberries = prediction[0][3] p_watermelon = prediction[0][4] return {'apple': p_apple, 'banana': p_banana, 'pinenapple': p_pinenapple, 'strawberries': p_strawberries, 'watermelon': p_watermelon} # Create the Gradio interface input_image = gr.Image() iface = gr.Interface( fn=predict_fruit, inputs=input_image, outputs=gr.Label(), examples=["p_inference_fruits/images/ap1.jpeg", "p_inference_fruits/images/ap2.jpeg", "p_inference_fruits/images/ap3.jpeg", "p_inference_fruits/images/ba1.jpeg", "p_inference_fruits/images/ba2.jpeg", "p_inference_fruits/images/ba3.jpeg", "p_inference_fruits/images/pi1.jpeg","p_inference_fruits/images/pi2.jpeg","p_inference_fruits/images/pi3.jpeg","p_inference_fruits/images/st1.jpeg", "p_inference_fruits/images/st2.jpeg", "p_inference_fruits/images/st3.jpeg","p_inference_fruits/images/wa1.jpeg","p_inference_fruits/images/wa2.jpeg","p_inference_fruits/images/wa3.jpeg"], description="TEST.") iface.launch()