import os import requests import pandas as pd import json import time import matplotlib as mpl import matplotlib.font_manager as fm import matplotlib.pyplot as plt import streamlit as st # Streamlit 應用程式標題 st.title('電商商品價格分析 - MOMO & PChome') # 從使用者獲取搜索關鍵字和頁數 search_keyword = st.text_input("請輸入要搜索的關鍵字:", "手機") page_number = st.number_input("請輸入要搜索的頁數:", min_value=1, value=1) if st.button('搜索'): momo_data = pd.DataFrame() pchome_data = pd.DataFrame() # MOMO 平台搜索邏輯 momo_url = "https://apisearch.momoshop.com.tw/momoSearchCloud/moec/textSearch" momo_headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36" } momo_payload = { "host": "momoshop", "flag": "searchEngine", "data": { "searchValue": search_keyword, "curPage": str(page_number), "priceS": "0", "priceE": "9999999", "searchType": "1" } } momo_response = requests.post(momo_url, headers=momo_headers, json=momo_payload) if momo_response.status_code == 200: momo_data_from_api = momo_response.json() momo_products = momo_data_from_api.get('rtnSearchData', {}).get('goodsInfoList', []) momo_product_list = [] for product in momo_products: name = product.get('goodsName', '') price = product.get('goodsPrice', '') price_str = str(price) if '(' in price_str: price_str = price_str.split('(')[0] price_str = price_str.replace(',', '').replace('$', '') try: product_price = float(price_str) except ValueError: product_price = 0 momo_product_list.append({'title': name, 'price': product_price}) momo_data = pd.DataFrame(momo_product_list) else: st.error(f"MOMO 請求失敗,狀態碼: {momo_response.status_code}") # PChome 平台搜索邏輯 for i in range(1, page_number + 1): pchome_url = f'https://ecshweb.pchome.com.tw/search/v3.3/all/results?q={search_keyword}&page={i}&sort=sale/dc' pchome_list_req = requests.get(pchome_url) if pchome_list_req.status_code == 200: pchome_getdata = json.loads(pchome_list_req.content) pchome_todataFrame = pd.DataFrame(pchome_getdata['prods']) pchome_todataFrame.rename(columns={'name': 'title'}, inplace=True) pchome_data = pd.concat([pchome_data, pchome_todataFrame]) time.sleep(1) # Respectful delay else: st.error(f"PChome 請求失敗,狀態碼: {pchome_list_req.status_code}") # 計算 MOMO 的統計數據 if not momo_data.empty: momo_max_price = momo_data['price'].max() momo_min_price = momo_data['price'].min() momo_max_product = momo_data[momo_data['price'] == momo_max_price]['title'].values[0] momo_min_product = momo_data[momo_data['price'] == momo_min_price]['title'].values[0] momo_mean_price = momo_data['price'].mean() st.subheader("MOMO 統計數據") st.write(f"最高價格商品: {momo_max_product}") st.write(f"價格: {momo_max_price}") st.write(f"最低價格商品: {momo_min_product}") st.write(f"價格: {momo_min_price}") st.write(f"平均價格: {momo_mean_price:.2f}") # 顯示 MOMO 的 DataFrame st.write(momo_data[['title', 'price']]) # 計算 PChome 的統計數據 if not pchome_data.empty: pchome_max_price = pchome_data['price'].max() pchome_min_price = pchome_data['price'].min() pchome_max_product = pchome_data[pchome_data['price'] == pchome_max_price]['title'].values[0] pchome_min_product = pchome_data[pchome_data['price'] == pchome_min_price]['title'].values[0] pchome_mean_price = pchome_data['price'].mean() st.subheader("PChome 統計數據") st.write(f"最高價格商品: {pchome_max_product}") st.write(f"價格: {pchome_max_price}") st.write(f"最低價格商品: {pchome_min_product}") st.write(f"價格: {pchome_min_price}") st.write(f"平均價格: {pchome_mean_price:.2f}") # 顯示 PChome 的 DataFrame st.write(pchome_data[['title', 'price']]) # 繪製合併的價格點狀圖 if not momo_data.empty or not pchome_data.empty: # 字型設定 font_url = 'https://github.com/googlefonts/noto-cjk/raw/main/Sans/OTF/TraditionalChinese/NotoSansCJKtc-Regular.otf' font_response = requests.get(font_url) font_path = 'NotoSansCJKtc-Regular.otf' with open(font_path, "wb") as font_file: font_file.write(font_response.content) fm.fontManager.addfont(font_path) mpl.rc('font', family='Noto Sans CJK TC') # 合併兩個 DataFrame momo_data['platform'] = 'MOMO' pchome_data['platform'] = 'PChome' all_data = pd.concat([momo_data, pchome_data]) # 繪製價格點狀圖 fig, ax = plt.subplots(figsize=(10, 6)) for platform in all_data['platform'].unique(): platform_data = all_data[all_data['platform'] == platform] ax.scatter(platform_data.index, platform_data['price'], label=platform, s=100, alpha=0.7) ax.set_title(f'電商平台 "{search_keyword}" 價格比較 - MOMO & PChome', fontsize=20, fontweight='bold') ax.set_xlabel('商品 ID', fontsize=14) ax.set_ylabel('價格', fontsize=14) ax.axhline(y=all_data['price'].mean(), color='red', linestyle='--', linewidth=2, label=f'總平均價格: {all_data["price"].mean():.2f}') ax.legend(fontsize=10, loc='upper left') ax.grid(axis='y', linestyle='--', alpha=0.5) ax.set_facecolor('#f8f8f8') plt.tight_layout() st.pyplot(fig) os.remove(font_path) else: st.warning("未能從 MOMO 或 PChome 獲取到數據")