import streamlit as st import time import cv2 import pandas from PIL import Image import numpy as np import tensorflow as tf from tensorflow.keras.applications.resnet50 import preprocess_input from tensorflow.keras.preprocessing.image import img_to_array st.title('Jacaranda Identification') st.markdown("This is a Deep Learning application to identify if a satellite image clip contains Jacaranda trees.\n") st.markdown('The predicting result will be "Jacaranda", or "Others".') st.markdown('You can click "Browse files" multiple times until adding all images before generating prediction.\n') img_height = 224 img_width = 224 class_names = ['Jacaranda', 'Others'] model = tf.keras.models.load_model('model') state = st.session_state if 'file_uploader_key' not in state: state['file_uploader_key'] = 0 if "uploaded_files" not in state: state["uploaded_files"] = [] uploaded_file = st.file_uploader( "Upload images", type="jpg" or 'jpeg' or 'bmp' or 'png' or 'tif', accept_multiple_files=True, key=state['file_uploader_key']) if uploaded_file is not None: st.image(uploaded_file, width=100) state["uploaded_files"] = uploaded_file if st.button("Clear uploaded images"): state["file_uploader_key"] += 1 st.empty() time.sleep(.5) st.experimental_rerun() if st.button("Generate prediction"): for file in uploaded_file: img = Image.open(file) img_array = img_to_array(img) img_array = tf.expand_dims(img_array, axis = 0) # Create a batch processed_image = preprocess_input(img_array) predictions = model.predict(processed_image) score = predictions[0] st.markdown("Predicted class of the image {} is : {}".format(file, class_names[np.argmax(score)]))