import spaces import gradio as gr import torch import random import os from typing import List, Tuple from config_generator import generate_complete_game from dataset import get_processor, joint_speaker_input, joint_listener_input, get_index_to_token from models import get_model css=""" .radio-group .wrap { display: grid; grid-template-columns: repeat(5, 1fr); grid-template-rows: repeat(5, 1fr); width: 100%; height: 100% } """ def initialize_game() -> List[List[str]]: context_dicts = [generate_complete_game() for _ in range(2)] roles = ["speaker"] * 3 + ["listener"] * 3 speaker_images = [] listener_images = [] targets = [] for context_dict in context_dicts: for i in range(3): speaker_images.append(context_dict["speaker_context"]) listener_images.append(context_dict["listener_context"]) targets.append(context_dict["targets"][i]) return list(zip(speaker_images, listener_images, targets, roles)) def get_model_response( model, adapter_name, processor, index_to_token, role: str, image_paths: List[str], user_message: str = "", target_image: str = "" ) -> str: if role == "speaker": img_dir = "tangram_pngs" print("Starting processing") input_tokens, attn_mask, images, image_attn_mask, label = joint_speaker_input( processor, image_paths, target_image, model.get_listener().device ) image_paths = [image_paths] print("Starting inference") captions = get_speaker_response(model, images, input_tokens, attn_mask, image_attn_mask, label, image_paths, processor, img_dir, index_to_token, adapter_name) print("Done") response = captions[0] else: # listener print("Starting processing") images, l_input_tokens, l_attn_mask, l_image_attn_mask, s_input_tokens, s_attn_mask, \ s_image_attn_mask, s_target_mask, s_target_label = joint_listener_input( processor, image_paths, user_message, model.get_listener().device ) print("Starting inference") response = get_listener_response( model, images, l_input_tokens, l_attn_mask, l_image_attn_mask, index_to_token, s_input_tokens, s_attn_mask, s_image_attn_mask, s_target_mask, s_target_label, image_paths, adapter_name ) print("Done") return response @spaces.GPU(duration=20) def get_speaker_response(model, images, input_tokens, attn_mask, image_attn_mask, label, image_paths, processor, img_dir, index_to_token, adapter_name): model.model.set_adapter(adapter_name) model = model.cuda() with torch.no_grad(): captions, _, _, _, _ = model.generate( images.cuda(), input_tokens.cuda(), attn_mask.cuda(), image_attn_mask.cuda(), label.cuda(), image_paths, processor, img_dir, index_to_token, max_steps=30, sampling_type="nucleus", temperature=0.7, top_k=50, top_p=1, repetition_penalty=1, num_samples=5 ) return captions @spaces.GPU(duration=20) def get_listener_response(model, images, l_input_tokens, l_attn_mask, l_image_attn_mask, index_to_token, s_input_tokens, s_attn_mask, s_image_attn_mask, s_target_mask, s_target_label, image_paths, adapter_name): model.model.set_adapter(adapter_name) model = model.cuda() with torch.no_grad(): _, _, joint_log_probs = model.comprehension_side([ images.cuda(), l_input_tokens.cuda(), l_attn_mask.cuda(), l_image_attn_mask.cuda(), index_to_token, s_input_tokens.cuda(), s_attn_mask.cuda(), s_image_attn_mask.cuda(), s_target_mask.cuda(), s_target_label.cuda(), ]) target_idx = joint_log_probs[0].argmax().item() response = image_paths[target_idx] return response def interaction(model, processor, index_to_token, model_iteration: str) -> Tuple[List[str], List[str]]: image_role_pairs = initialize_game() conversation = [] turn = 0 num_correct = 0 human_role = None adapter_name = "initial" if model_iteration == "Initial System" else "final" internal_model = model for speaker_image, listener_image, target_image, model_role in image_role_pairs: acc_message = f"{num_correct}/{turn}" if model_role == "speaker": human_role = "Listener" turn += 1 turn_message = f"{turn}/6" human_context = listener_image model_context = speaker_image target_idx = human_context.index(target_image) conversation.extend([ f"TURN: {turn}/6", f"Guess the target image given the speaker's description. ", ]) model_message = get_model_response(internal_model, adapter_name, processor, index_to_token, model_role, model_context, target_image=target_image) conversation.append(f"Model: {model_message}") conversation.append("You: The target is Image ") user_message = yield human_context, conversation, human_role, turn_message, acc_message conversation[-1] += f"{user_message}" if int(user_message) == target_idx + 1: conversation.append("Correct!\n") num_correct += 1 else: conversation.append(f"Incorrect!\n") else: # listener human_role = "Speaker" turn += 1 turn_message = f"{turn}/6" human_context = speaker_image model_context = listener_image target_idx = human_context.index(target_image) conversation.extend([ f"TURN: {turn}/6", f"Generate a description for the target image. Your target is Image {target_idx + 1}", ]) user_message = yield human_context, conversation, human_role, turn_message, acc_message conversation.append(f"You: {user_message}") model_message = get_model_response(internal_model, adapter_name, processor, index_to_token, model_role, model_context, user_message=user_message) model_idx = human_context.index(model_message) if int(model_idx) == int(target_idx): conversation.append("The model guessed correctly!\n") num_correct += 1 else: conversation.append(f"The model guessed incorrectly.\n") acc_message = f"{num_correct}/{turn}" conversation.append("The game is over!") yield human_context, conversation, human_role, turn_message, acc_message def create_app(): with gr.Blocks(css=css) as app: gr.Markdown("# Tangram Reference Game") gr.Markdown( '### You will be playing a sequence of reference games against a model. To start a game, first select whether ' +\ 'you wish to play against our initial trained model ("Initial System") or our model at the end of deployment ("Final System") ' +\ 'and press the "Start Game" button. There will be 6 rounds of reference games. You will take on a "listener" or a "speaker" role at each round.' ) gr.Markdown( '### In the speaker role, you will be assigned a target image. Your goal will be to describe this image (via a message in the textbox) ' +\ 'so that your partner can guess what it is.' ) gr.Markdown( '### In the listener role, you will be given a description. Your goal will be ' +\ 'to select the image that the description best describes (by clicking on the relevant button).' ) gr.Markdown( '### Press "Send" to submit your action in either role and make the game proceed.' ) with gr.Row(): model_iteration = gr.Radio(["Initial System", "Final System"], label="Model Iteration") start_btn = gr.Button("Start Game") with gr.Row(): current_role = gr.Textbox(label="YOUR ROLE") current_turn = gr.Textbox(label="TURN") accuracy = gr.Textbox(label="FINAL ACCURACY") with gr.Row(): image_output = gr.Gallery( label="CONTEXT", show_label=False, elem_id="gallery", columns=5, rows=2, object_fit="contain", height="250px", allow_preview=False, container=True ) with gr.Row(): conversation_output = gr.Textbox(label="Interaction History") with gr.Column(): user_input = gr.Textbox(label="Your Message as Speaker", interactive=False) radio_buttons = gr.Radio( label="Your Guess as Listener", elem_classes="radio-group", choices=list(range(1, 11)), interactive=False, ) send_btn = gr.Button("Send") interaction_generator = None model = get_model() processor = get_processor() index_to_token = get_index_to_token() print("Heyo!") def start_interaction(model_iteration): if model_iteration is None: return [], "Please select a model iteration.", "", "", "", gr.update(interactive=False), \ gr.update(interactive=False), gr.update(interactive=False) nonlocal interaction_generator nonlocal model nonlocal processor nonlocal index_to_token interaction_generator = interaction(model, processor, index_to_token, model_iteration) images, conversation, role, turn, acc_message = next(interaction_generator) human_listener = role == "Listener" return [(f"tangram_pngs/{img}", f"Image {i+1}") for i, img in enumerate(images)], "\n".join(conversation), role, turn, acc_message, \ gr.update(interactive=not human_listener), gr.update(interactive=human_listener), gr.update(interactive=True) def send_message(message, radio_choice): nonlocal interaction_generator if interaction_generator is None: return [], "Please start the interaction first.", "", gr.update(interactive=False), gr.update(interactive=False, value=None) try: user_output = message if radio_choice is None else radio_choice images, conversation, role, turn, acc_message = interaction_generator.send(user_output) human_listener = role == "Listener" return [(f"tangram_pngs/{img}", f"Image {i+1}") for i, img in enumerate(images)], "\n".join(conversation), role, turn, acc_message, \ gr.update(interactive=not human_listener, value=""), gr.update(interactive=human_listener, value=None), gr.update(interactive=True) except StopIteration: return [], conversation_output.value, current_role.value, current_turn.value, accuracy.value, gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False) start_btn.click( start_interaction, inputs=[model_iteration], outputs=[image_output, conversation_output, current_role, current_turn, accuracy, user_input, radio_buttons, send_btn] ) send_btn.click(send_message, inputs=[user_input, radio_buttons], outputs=[image_output, conversation_output, current_role, current_turn, accuracy, user_input, radio_buttons, send_btn]) return app app = create_app() app.launch()