import gradio as gr import torch import numpy as np import modin.pandas as pd from PIL import Image from diffusers import DiffusionPipeline device = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.cuda.is_available(): PYTORCH_CUDA_ALLOC_CONF={'max_split_size_mb': 6000} torch.cuda.max_memory_allocated(device=device) torch.cuda.empty_cache() pipe = DiffusionPipeline.from_pretrained("segmind/SSD-1B", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) pipe.enable_xformers_memory_efficient_attention() pipe = pipe.to(device) torch.cuda.empty_cache() refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") refiner.enable_xformers_memory_efficient_attention() refiner = refiner.to(device) torch.cuda.empty_cache() upscaler = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True) upscaler.enable_xformers_memory_efficient_attention() upscaler = upscaler.to(device) torch.cuda.empty_cache() else: pipe = DiffusionPipeline.from_pretrained("segmind/SSD-1B", use_safetensors=True) pipe = pipe.to(device) refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", use_safetensors=True) refiner = refiner.to(device) def genie (prompt, negative_prompt, height, width, scale, steps, seed, upscaling): generator = torch.Generator(device=device).manual_seed(seed) int_image = pipe(prompt, negative_prompt=negative_prompt, num_inference_steps=steps, height=height, width=width, guidance_scale=scale, num_images_per_prompt=1, generator=generator, output_type="latent").images if upscaling == 'Yes': image = refiner(prompt=prompt, image=int_image).images[0] upscaled = upscaler(prompt=prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=5, guidance_scale=0).images[0] torch.cuda.empty_cache() return (image, upscaled) else: image = refiner(prompt=prompt, negative_prompt=negative_prompt, image=int_image).images[0] torch.cuda.empty_cache() return (image, image) gr.Interface(fn=genie, inputs=[gr.Textbox(label='Что вы хотите, чтобы ИИ генерировал'), gr.Textbox(label='Что вы не хотите, чтобы ИИ генерировал'), gr.Slider(512, 1024, 768, step=128, label='Высота картинки'), gr.Slider(512, 1024, 768, step=128, label='Ширина картинки'), gr.Slider(1, 15, 10, step=.25, label='Шкала расхождения'), gr.Slider(25, maximum=100, value=50, step=25, label='Количество итераций'), gr.Slider(minimum=1, step=1, maximum=999999999999999999, randomize=True, label='Зерно'), gr.Radio(['Да', 'Нет'], label='Ремастеринг?')], outputs=['image', 'image'], title="Стабильная Диффузия - SDXL - Upscaler", description="", article = "









").launch(debug=True, max_threads=80)