import gradio as gr
import torch
import numpy as np
import modin.pandas as pd
from PIL import Image
from diffusers import DiffusionPipeline
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if torch.cuda.is_available():
PYTORCH_CUDA_ALLOC_CONF={'max_split_size_mb': 6000}
torch.cuda.max_memory_allocated(device=device)
torch.cuda.empty_cache()
pipe = DiffusionPipeline.from_pretrained("segmind/SSD-1B", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
torch.cuda.empty_cache()
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16")
refiner.enable_xformers_memory_efficient_attention()
refiner = refiner.to(device)
torch.cuda.empty_cache()
upscaler = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True)
upscaler.enable_xformers_memory_efficient_attention()
upscaler = upscaler.to(device)
torch.cuda.empty_cache()
else:
pipe = DiffusionPipeline.from_pretrained("segmind/SSD-1B", use_safetensors=True)
pipe = pipe.to(device)
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", use_safetensors=True)
refiner = refiner.to(device)
def genie (prompt, negative_prompt, height, width, scale, steps, seed, upscaling):
generator = torch.Generator(device=device).manual_seed(seed)
int_image = pipe(prompt, negative_prompt=negative_prompt, num_inference_steps=steps, height=height, width=width, guidance_scale=scale, num_images_per_prompt=1, generator=generator, output_type="latent").images
if upscaling == 'Yes':
image = refiner(prompt=prompt, image=int_image).images[0]
upscaled = upscaler(prompt=prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=5, guidance_scale=0).images[0]
torch.cuda.empty_cache()
return (image, upscaled)
else:
image = refiner(prompt=prompt, negative_prompt=negative_prompt, image=int_image).images[0]
torch.cuda.empty_cache()
return (image, image)
gr.Interface(fn=genie, inputs=[gr.Textbox(label='Что вы хотите, чтобы ИИ генерировал'),
gr.Textbox(label='Что вы не хотите, чтобы ИИ генерировал'),
gr.Slider(512, 1024, 768, step=128, label='Высота картинки'),
gr.Slider(512, 1024, 768, step=128, label='Ширина картинки'),
gr.Slider(1, 15, 10, step=.25, label='Шкала расхождения'),
gr.Slider(25, maximum=100, value=50, step=25, label='Количество итераций'),
gr.Slider(minimum=1, step=1, maximum=999999999999999999, randomize=True, label='Зерно'),
gr.Radio(['Да', 'Нет'], label='Ремастеринг?')],
outputs=['image', 'image'],
title="Стабильная Диффузия - SDXL - Upscaler",
description="",
article = "
").launch(debug=True, max_threads=80)