import spaces import gradio as gr from llama_cpp import Llama import os # 初始化LLM llm = Llama.from_pretrained( repo_id="matteogeniaccio/phi-4", filename="phi-4-Q4_K_M.gguf", verbose=True, main_gpu=0, n_gpu_layers=-1 ) # 响应函数 @spaces.GPU def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # 构造消息内容 messages = [{"role": "system", "content": system_message}] for user_msg, assistant_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if assistant_msg: messages.append({"role": "assistant", "content": assistant_msg}) messages.append({"role": "user", "content": message}) # 使用llama-cpp-python的方式生成响应 response = llm.create_chat_completion( messages=messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p, stream=False ) # 返回流式响应 for chunk in response: if chunk and chunk.get("choices") and chunk["choices"][0].get("delta", {}).get("content"): yield chunk["choices"][0]["delta"]["content"] # Gradio 界面 demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" ), ], ) if __name__ == "__main__": demo.launch()