import csv import numpy as np import gradio as gr import plotly.graph_objs as go import datetime from plotly.subplots import make_subplots from testing_interface import model_defining # Function to load data from a text file into a numpy array of the right format def load_data(filename): with open(filename, 'r') as file: data = [int(line.strip()) for line in file] data = np.array(data, dtype=int) data[data == -100] = -1 return data.reshape((-1, 1)) # Convert a string with comma decimal separator to a float def convert_float(value_str): return float(value_str.replace(',', '.')) # Find indicated time in the acc_data def find_index(timestamps, date, begin_time, end_time): if date.startswith('0'): date = date[1:] begin_string = date + " " + begin_time + ":00.000" end_string = date + " " + end_time + ":00.000" begin_index = None end_index = None # Iterate over timestamps to find the indices for index, timestamp in enumerate(timestamps): if begin_index is None and timestamp == begin_string: begin_index = index if end_index is None and timestamp == end_string: end_index = index if begin_index is not None and end_index is not None: break return begin_index, end_index def process_csv(file, date, begin_time, end_time): if file is None: return "No file uploaded", None try: date_t = datetime.datetime.strptime(date, '%d/%m/%Y') begin_time_t = datetime.datetime.strptime(begin_time, '%H:%M').time() end_time_t = datetime.datetime.strptime(end_time, '%H:%M').time() except ValueError: return "Invalid date or time format. Please use DD/MM/YYYY for date and HH:MM for time.", None acc_data = [] time_parts = [] # Read and prep accelerometer data with open(file.name, 'r', newline='') as csvfile: csv_reader = csv.reader(csvfile) for _ in range(11): next(csv_reader) count = 0 for row in csv_reader: timestamp_parts = row[0].split() time_parts.append(row[0]) if len(timestamp_parts) >= 2: time_part = timestamp_parts[1] converted_values = [convert_float(val_str) for val_str in row[1:]] if len(converted_values) >= 3: row_data = [count, time_part] + converted_values acc_data.append(row_data) count += 1 # Write acc_data to a numpy array acc_data = np.array(acc_data)[:, 2:].astype(float) # Convert strings to floats begin_index, end_index = find_index(time_parts, date, begin_time, end_time) # Check if indexes are in acc_data if end_index is None: return "End time not found in data. Please check the specified end time.", None if begin_index is None: return "Begin time not found in data. Please check the specified begin time.", None acc_data = acc_data[begin_index-121:end_index+122, :] time_parts = time_parts[begin_index-121:end_index+122] # Call the model_defining function from testing.py name_model = "S3_101_102_103_validation_epoch_10.pth" output_file = "predicted_labels.txt" model_defining(acc_data, name_model, output_file) # Load the data predicted_labels = load_data("predicted_labels.txt") # Remove first and last 121 samples from acc_data acc_data = acc_data[121:-121, :] time_parts = time_parts[121:-121] # Append the new columns complete_array = np.hstack((acc_data, predicted_labels)) # Calculate the total number of predicted functional and non-functional activity total_predicted_functional = np.sum(complete_array[:, 3] != 0) total_predicted_non_functional = np.sum(complete_array[:, 3] == 0) # Calculate percentages predicted_functional_percentage = (total_predicted_functional / len(complete_array)) * 100 predicted_non_functional_percentage = (total_predicted_non_functional / len(complete_array)) * 100 # Calculate the total number of milliseconds for functional and non-functional activity total_predicted_functional_ms = np.sum(complete_array[:, 3] != 0) * 33.333333 total_predicted_non_functional_ms = np.sum(complete_array[:, 3] == 0) * 33.333333 # Convert milliseconds to minutes predicted_functional_minutes = total_predicted_functional_ms / (1000 * 60) predicted_non_functional_minutes = total_predicted_non_functional_ms / (1000 * 60) # Format the minutes into hours, minutes, and seconds predicted_functional_time = "{:02}:{:02}:{:02}".format(int(predicted_functional_minutes // 60), int(predicted_functional_minutes % 60), int(predicted_functional_minutes % 1 * 60)) predicted_non_functional_time = "{:02}:{:02}:{:02}".format(int(predicted_non_functional_minutes // 60), int(predicted_non_functional_minutes % 60), int(predicted_non_functional_minutes % 1 * 60)) # Formulate return string return_string = f"Percentage of predicted functional activity: {predicted_functional_percentage:.2f}%\nPercentage of predicted non-functional activity: {predicted_non_functional_percentage:.2f}%\n\nNumber of minutes of functional activity in predicted labels: {predicted_functional_time}\nNumber of minutes of non-functional activity in predicted labels: {predicted_non_functional_time}\n" # Create subplots fig = make_subplots(rows=2, cols=1, shared_xaxes=True, row_heights=[0.6, 0.4], specs=[[{"type": "scatter"}], [{"type": "scatter"}]]) # Add traces to the subplots fig.add_trace(go.Scatter(x=time_parts, y=complete_array[:, 0], mode='lines', name='Acc X', line=dict(width=0.75)), row=1, col=1) fig.add_trace(go.Scatter(x=time_parts, y=complete_array[:, 1], mode='lines', name='Acc Y', line=dict(width=0.75)), row=1, col=1) fig.add_trace(go.Scatter(x=time_parts, y=complete_array[:, 2], mode='lines', name='Acc Z', line=dict(width=0.75)), row=1, col=1) fig.add_trace(go.Scatter(x=time_parts, y=complete_array[:, 3], mode='lines', name='Predicted labels', line=dict(width=1)), row=2, col=1) # Update layout fig.update_layout( title='Accelerometer Data with Annotated Labels', xaxis=dict(title='Time (milliseconds)'), yaxis=dict(title='Accelerometer Data'), yaxis2=dict(title='Predicted'), showlegend=True, height=600 ) return return_string, fig with gr.Blocks(theme=gr.themes.Base()) as demo: gr.Markdown( """ # Functional Upper Limb Activity Recognition Model Upload your csv file containing accelerometer data to obtain a prediction on the amount of functional activity of the upper limbs. """) with gr.Row(equal_height=True): with gr.Column(): input_file = gr.File(label="Upload CSV file") input_date = gr.Textbox(label="Date (DD/MM/YYYY)") input_begin_time = gr.Textbox(label="Begin Time (HH:MM)") input_end_time = gr.Textbox(label="End Time (HH:MM) - Max 8 hours after begin time") with gr.Row(): submit_btn = gr.Button("Submit", variant='primary') clear_btn = gr.Button("Clear", variant='secondary') output_text = gr.Textbox(label="Prediction statistics") output_plot = gr.Plot(label="CSV Plot") submit_btn.click(fn=process_csv, inputs=[input_file, input_date, input_begin_time, input_end_time], outputs=[output_text, output_plot]) clear_btn.click(fn=lambda: (None, "", "", ""), outputs=[input_file, input_date, input_begin_time, input_end_time, output_text, output_plot]) demo.launch()