import os import gradio as gr api_key = os.getenv('HF_API_KEY') # with gr.Blocks() as demo: # gr.load("fffiloni/sd-xl-custom-model", api_key=api_key, hf_token=api_key, src="spaces") from gradio_client import Client def predict(prompt): client = Client("fffiloni/sd-xl-custom-model") result = client.predict( custom_model="lichorosario/dott_remastered_style_lora_sdxl", api_name="/load_model" ) client = Client("fffiloni/sd-xl-custom-model") result = client.predict( custom_model="lichorosario/dott_remastered_style_lora_sdxl", weight_name="dott_style.safetensors", prompt=prompt, inf_steps=25, guidance_scale=12, width=1024, height=512, seed=-1, lora_weight=1, api_name="/infer" ) return result with gr.Blocks() as demo: inputs = gr.Textbox(label="Prompt") outputs = [gr.Image(label="Image"), gr.Textbox(label="Seed")] greet_btn = gr.Button("Generate") greet_btn.click(fn=predict, inputs=inputs, outputs=outputs, api_name="predict") demo.launch()